
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Jussi Judin

A data encoding approach to video com-
munication system verification

Master’s Thesis
Espoo, May 17, 2013

Supervisor: Professor Erkki Oja
Instructor: Jukka Lehtniemi, M.Sc. (Tech.)

2

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Jussi Judin

Title:
A data encoding approach to video communication system verification

Date: May 17, 2013 Pages: 97

Professorship: Information and Computer Science Code: T-61

Supervisor: Professor Erkki Oja

Instructor: Jukka Lehtniemi, M.Sc. (Tech.)

Standard software development practices emphasize more and more test automation
that enables developers to focus on new functionality instead of manually making
sure that the existing functionality still works. We mostly rely on our own eyes
when we want to verify that images look as they should. This makes it especially
cumbersome when we want to verify that a video communication system works
correctly even after changes to the system. Video communication systems pose
unique challenges from a test automation point of view as such systems makes the
image go through various distortions that follow from the video encoding, transfer,
and display processes that make it hard to automatically verify if the output has
everything that is expected.

The goal of this thesis is to investigate methods that can be used for functional
verification of video communication systems. The verification consists of checking
if the output video data includes all expected input video streams depending on
the system state. This includes the implementation and evaluation of one method
that can encode data into video that will then make it possible to see if the data
passes correctly through the video communication system under test.

The used method was a custom 9× 9 matrix type binary barcode encoding 60 bits
of raw data. Its detector is based on edge features that assume the use of linear
interpolation as the resampling filter. This results in a detector that correctly
decodes barcodes adhering to this model with the smallest module size of 1.9 pixels.
When lossy JPEG image compression is applied to the barcode image, minimum
fully successfully recognized module size varies between 2–4 pixels depending on
the compression ratio.

Keywords: information encoding, digital image processing, two-dimensional
barcode, computer vision, video compression

Language: English

3

4

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Jussi Judin

Työn nimi:
Videoviestintäjärjestelmän oikeellisuuden tarkastaminen dataa koodaamalla

Päiväys: 17. toukokuuta 2013 Sivumäärä: 97

Professuuri: Tietojenkäsittelytiede Koodi: T-61

Valvoja: Professori Erkki Oja

Ohjaaja: Diplomi-insinööri Jukka Lehtniemi

Ohjelmistotestausta automatisoidaan nykyään yhä enenevissä määrin, mikä mah-
dollistaa kehittäjille keskittymisen uusien ominaisuuksien tuottamiseen olemassaole-
vien ominaisuuksien toiminnallisuuden varmistamisen sijaan. Videokuvan oikeel-
lisuutta tarkastellaan pääasiassa silmämääräisesti. Tämän seurauksena videovi-
estintäjärjestelmien oikeellisuuden tarkastaminen muutosten jälkeen on erityisen
raskasta. Videoviestintäjärjestelmille ominaisena testiautomaatiota hankaloitta-
vana haasteena on kuvan vääristyminen videopakkaus-, siirto- ja näyttöprosessien
seurauksena. Kuvan vääristyminen tekee hankalaksi määrittää sen, löytyykö
ulostulevasta kuvasta kaikki haluttu.

Tämän työn tavoitteena on tutkia keinoja videoviestintäsovellusten toiminnalliseen
testaukseen. Tämä toiminnallinen testaus koostuu ulostulevan kuvan tarkastelusta
järjestelmän oletetun tilan perusteella. Työssä toteutetaan ja arvioidaan yksi
menetelmä datan sisällyttämiseksi videoon. Tällä menetelmällä voidaan varmistaa
se, kulkeeko videokuva oikein testattavan videoviestintäjärjestelmän läpi.

Valittuna menetelmänä käytettiin mukautettua 9× 9 moduulin kokoista matriisi-
tyyppistä kaksiarvoista raakakapasiteetiltaan 60 bittiä olevaa viivakoodia. Tämän
viivakoodin lukemiseksi luotu tunnistin käyttää piirteinään reunoja ja olettaa
kuvan kulkevan lineaarisen interpolaatiosuotimen läpi. Tunnistin tunnistaa tämän
mallin perusteella oikein viivakoodeja, joiden moduulien koko on pienimmillään
1,9 kuvapistettä. Häviöllisellä JPEG-kuvanpakkauksella täysin onnistuneesti tun-
nistettujen viivakoodien moduulikoko vaihtelee 2–4 kuvapisteen välillä riippuen
kuvanpakkausasteesta.

Asiasanat: informaation enkoodaus, digitaalinen kuvankäsittely, kaksiulot-
teinen viivakoodi, konenäkö, videopakkaus

Kieli: Englanti

5

6

Acknowledgments

I want to thank Jukka Lehtniemi for his long-term vision that led to this
thesis and for his relentless push to get this thesis forward. I would also like
to thank the people at Oy LM Ericsson Ab for supporting this work and
providing means to accomplish this.

The appearance of this thesis would not be as good without the typograph-
ical advices from Miika-Petteri Matikainen and the written text did benefit
from the keen eye of Jukka Lehtniemi. I also want to thank my supervisor,
professor Erkki Oja, for his suggestions and corrections.

Espoo, May 17, 2013

Jussi Judin

7

8

Contents

1 Introduction 11
1.1 The structure of this thesis . 12
1.2 A word about images . 12

2 Video communication systems 13
2.1 Services . 13

2.1.1 Functional verification environment 14
2.2 Video transmission . 14

2.2.1 Transmission issues . 15
2.3 User interface . 16

2.3.1 Scaling . 18
2.3.2 Frame rate changes . 19

2.4 Encoding . 21
2.4.1 Color space conversion 23
2.4.2 Chroma subsampling 23
2.4.3 Transform coding and quantization 24
2.4.4 Transcoding . 25
2.4.5 Other distortions . 26

3 Encoding data into images 27
3.1 Requirements . 27
3.2 Information encoding . 29

3.2.1 Glyphs . 30
3.2.2 Text . 31
3.2.3 Digital watermarks . 31
3.2.4 Barcodes . 34

3.3 Method of choice . 38

4 Implementation 39
4.1 Barcode design . 39

4.1.1 Modules . 43

9

4.1.2 Finder pattern . 44
4.1.3 Barcode area and codeword placement 46

4.2 Existing detectors . 47
4.3 Detector design . 49

4.3.1 Distortion model . 50
4.3.2 Edge detection . 52
4.3.3 Finder pattern detection 54
4.3.4 Match merging . 57
4.3.5 Merged segment intersection 59
4.3.6 Barcode area candidates 60
4.3.7 Candidate area elimination 61
4.3.8 Value reading . 64

5 Evaluation 67
5.1 Evaluation setup . 67
5.2 Detection limits . 68

5.2.1 The minimal module size 68
5.2.2 Image compression . 70
5.2.3 Heavily upscaled images 71

5.3 Testing for false positives . 73
5.3.1 Natural video sequences 73
5.3.2 Data sharing . 76

6 Discussion 79

7 Conclusions 81

Bibliography 83

A Discrete cosine transform 93
A.1 Block based discrete cosine transform 93
A.2 Discrete cosine transform in JPEG 95

B Video test sequences 97

10

Chapter 1

Introduction

The market for video communication is growing fast[1], as the rising end-user
bandwidth[2] and ubiquitous integrated video cameras make it possible to
experience the richness of real-time video communication in situations where
formerly communication by voice or text were the only options. Systems for
video communication pose unique challenges from the software testing point
of view. They may provide different layouts and output stream combinations
for the resulting video data depending on the viewing participant, participant
count, video output system capabilities, and on other external factors.

Humans can easily check if a video communication system works correctly
just by looking at the resulting output. This is demonstrated in figure 1.1 that
shows a typical multi-participant video conferencing situation where a fault in
mixing results in an incorrect output image. Although this is easy to verify
during the development, verifying that all parts of the system work correctly
after every change is slow and expensive to do manually. Automated software

input

video communi-
cation system

output

wanted
output

Figure 1.1: An example video communication system fault where video mixing
results in an incorrect output image.

11

12 CHAPTER 1. INTRODUCTION

testing tries to ensure that defects resulting from changes to the software, in
the system, or to the environment will be noticed as soon as possible.

Software testing by machine vision methods is already enabled by com-
mercial and free software applications[3, 4]. These applications focus on user
interface testing by searching for static graphical elements and text strings.
A video communication system, however, can produce a picture that looks
correct to a human observer even after the original video stream is subjected
to various distortions. These distortions can come from scaling, occlusion,
embedded user interface elements, video compression, and other filtering
operations. Also, as the video image does generally not stay static and changes
over time, these distortions can also change over time. From the software
testing perspective these distortions combined with the high rate of change of
the video image make it hard to verify if the resulting image looks correct.

The goal of this thesis is to investigate methods for encoding information
into video data that can be then decoded and used for functional verification
of the resulting output image. The output image is expected to undergo
distortions that can occur in video communication systems.

1.1 The structure of this thesis

This thesis is divided into four major sections. First, chapter 2 describes
how a video communication system transfers and modifies the video image.
Chapter 3 then examines a few different methods that can be used to encode
data into images and their suitability for this task. This then results in a
custom barcode and its detector, that are described in chapter 4. Finally, the
barcode detector is evaluated for its sensitivity and robustness in chapter 5.

1.2 A word about images

This thesis includes color images that are best viewed on a display device
with color gamut that can show the full sRGB color space. The electronic
copy of this thesis is available from the author and from places that distribute
such copy.

Chapter 2

Video communication systems

High bandwidth communication links have enabled video communication
in places where communication by voice or by text were the only viable
options. Video communication applications range from simple static file
transfer applications to real-time broadcasting applications including multiple
participants with a large receiving audience[5].

This chapter focuses on describing how the video stream flows through
video communication systems that are meant primarily for face to face
communication. This also shows what challenges there are for testing the
video output of such systems.

2.1 Services

Video communication services range from simple video on demand services
that provide possibility to view pre-recorded content without too tight real-
time constraints to highly interactive multi-participant, multi-endpoint video
conferencing applications with more complex video stream structure[5, 6].
Here a video communication system refers to a collection of applications
and links between them that may be used for two-way interactive video
communication. These applications include video calling, video conferencing
and remote collaboration with video image support. These generally have the
view of one or more participants in the same video stream and optional user
interface and shared content elements. Different participants can also receive
different video image that depends on the participant count and the type of
communication.

Fitting multiple streams onto a limited screen estate creates the need for
output stream manipulation and selection. Output manipulation includes
scaling, cropping, occluding, and arranging selected streams to the screen

13

14 CHAPTER 2. VIDEO COMMUNICATION SYSTEMS

area that the display device provides. These operations make it harder to
use direct video image comparison based methods, as streams from multiple
clients get mixed together. Also, the possibility for varying amount of delay
means that we can not rely on knowing the exact stream position for each
input stream that is included in the output video stream.

2.1.1 Functional verification environment

The main challenge in the video communication system testing is to see if
video streams go through the intermediate processing steps correctly. To
do this in the testing environment, we generally need to simulate the video
stream creation and consumption parts. This is done by injecting our own
data through the processing pipeline and see if a correct looking picture comes
out. We can inject this data in multiple places:

• by showing our own video stream to the video capturing device.

• by feeding the video capturing interface with our own video stream.

• by simulating the video capturing device.

• by using our own client software that only sends a predefined video
stream.

The output can be captured in similar fashion. These different approaches
have their advantages and disadvantages. The smaller part we try to simulate,
the smaller are the set-up and run-time demands on the testing process. On
the other hand, if the test verifies that only one part works, this does not
guarantee that the whole system works properly under varying conditions.
For example, simulating our own video capturing device enables us to be
hardware-independent during testing. This does not, however, verify situations
where the capturing device is accessed incorrectly and thus results in an
incorrect or completely missing image in the real use case. Therefore the test
method for video communication system should be flexible enough that it can
be used in any input and output phase.

2.2 Video transmission

Video communication between two or more participants requires that the
video stream is transferred from one participant to all participants that want
to receive that stream. As video stream is read from the video capturing

2.2. VIDEO TRANSMISSION 15

device, it has a certain frame rate, resolution, color space, color depth, and
may be read by interlaced or progressive scanning method. Any of these
properties may need to be changed to match the ones that the receiving end
accepts. Video stream may also be modified to make it easier to match the
available bandwidth constraints at the sending or the receiving end. The
sender can also filter out the noise and add overlay graphics or text to the
video stream before the stream is encoded and sent to the receiving end inside
an appropriate container format.[6]

Sending video streams to receiving clients is usually done either by sending
the same video stream to all receiving clients directly, or by using an intermedi-
ate service that then forwards the stream to receiving clients. This intermediate
service usually lessens the bandwidth and video format requirements on the
receiving end. The intermediate service can also combine multiple streams
together and transcode them to match the receiving client’s capabilities.[6]
As the intermediate service can hide its own architecture from clients, it
can be dynamically scaled to support much higher client counts than it
would be possible to support even by highest bandwidth connections[7]. This
intermediate processing, on the other hand, adds some delay that is especially
undesired for real-time video communication.

As the receiving end receives one or more video streams, it then decodes
them and makes the video image appropriate for viewing by applying necessary
transformations, like scaling and moving the video image to correct position
on the screen. As the video is subsequently shown on the display device,
it may also include overlaid user interface components and other occluding
elements.[6]

2.2.1 Transmission issues

Two-way video communication generally is a real-time application that suffers
from the underlying transmission layer issues. Every method to overcome
these issues is a trade-off between the required resources and service quality.
Common quality issues arise from excessive delay, insufficient transmission
capacity, and from packet loss and corruption[8, 9]. These issues bring out the
need for various error recovery mechanisms on the receiving end to be able to
show the picture as error free as possible[10].

Excessive delay reduces the real-time feeling of video communication and
arises from video processing and network transfer delays. Video processing
delay arises from the time required for encoding and decoding, from the
requirements for rate control buffering, and how far into the future the video
decoder can look to find redundant data[11]. When reducing the encoding
delay, the trade-off is a loss of quality for the predefined bitrate, as the encoder

16 CHAPTER 2. VIDEO COMMUNICATION SYSTEMS

has less means to find out redundant data. Network delay mainly results from
the flight time of packets and from the intermediate buffering and processing
by the networking equipment[12]. Reducing the network delay usually means
using alternative service providers, network services with lower delay, or higher
priority routes. Trade-off in this usually is the higher cost for such services and
being physically bound to places where these better connections are available.

Varying transmission capacities of the video communication session partic-
ipants due to different connection capacities or changing network conditions
pose their own challenges for sending video that matches the available band-
width. Approaches to mitigate this vary from sending the same video stream
encoded with different bitrates to using layered approaches. The disadvantage
of encoding the same stream multiple times with different bitrates is that it
requires more resources from the sender side and the receiving side can not
that gradually adapt to changing network conditions. In layered approaches
video is encoded by having a base layer that requires a certain amount of
bandwidth and subsequent enhancement layers that provide better image
quality for higher bitrates[13, 14]. Layered approaches adapt to the varying
bandwidth requirements with less abrupt changes but need higher bitrates to
give the same image quality as non-layered approaches.

Various network issues may lead to lost, corrupt, or late video packets.
These result in lost data that needs to be taken into account to provide smooth
viewing experience. One way to do this is to ask the sender to re-transmit the
already sent data. This adds to the decoding delay and increases the memory
requirements of the sender, as the sent video data needs to be kept in memory
for some time. Another way is to add forward error correction that includes
error correction data in addition to the video data. This, however, reduces the
available bandwidth for the actual video data and does not guarantee that all
lost packets can be recovered[15]. When video data is irrecoverably lost, errors
will propagate until the affected parts are refreshed by self-sustaining image
data[16, 17]. Therefore some form of spatial or temporal error concealment,
that tries to minimize the visible error until the affected part is refreshed, is
useful so that the affected parts, or the whole video stream, do not need to be
frozen. Error concealment techniques may need a large amount of processing
power and therefore may not be applicable in devices that do not have much
extra processing power to spare[18].

2.3 User interface

User interface is the part that affects how video streams are shown to indi-
vidual participants. The resulting image on the display device is affected by

2.3. USER INTERFACE 17

Lorem ipsum dolor sit amet, consecte
tur adipisicing elit, sed do eiusmod tem
por incididunt ut labore et dolore magn
a aliqua. Ut enim ad minim veniam, qui
s nostrud exercitation ullamco laboris ni
si ut aliquip ex ea commodo consequat.
Duis aute irure dolo...

Figure 2.1: Different layout choices for different numbers of participants and
aspect ratios. Red color indicates sender’s video stream.

the application type, the screen estate that is available, by the number of
participants, and the output layout that is in use. This creates challenges
for output verification as the position and the size of a single video stream
picture is unknown. The video stream may also be partially cropped or
occluded[19, 20].

The application type affects how much focus the actual video stream
image gets. If the application is a general use collaboration application or if it
primarily provides other means for communication, then the video image may
take just a small spot on the screen and other user interface elements will
take most of the screen estate. However, if the application is meant for video
calls, video conferencing, or is a part of a telepresence system, then the video
image has the most significant role and other user interface elements are there
just to enable video communication between participants.

Participant count and the available screen estate generally decide the
usable layout choices. High-end room and telepresence systems may focus on
providing separate screens for different streams and rely on static camera
positioning[21] to eliminate the need to show the outgoing video stream to
the sender. On the other hand if cameras are not static, or are integrated
into screens of the sending and receiving devices, viewing own picture creates
one additional stream that needs to be displayed on the screen. Also, if the
participant count is higher than can comfortably be fit on the screen at once,
then there is a need for a scheme that decides which streams are shown on the

18 CHAPTER 2. VIDEO COMMUNICATION SYSTEMS

(a) Added borders. (b) Cropping. (c) Stretching.

Figure 2.2: Different methods for fitting different aspect ratio images together.

screen. This scheme can generally be based on static choices by the receiver, by
the session moderator, on speaker activity, or by some mix of those schemes[6].

Figure 2.1 shows different layout variations that take into account different
participant counts, communication modes, and client capabilities. Issues with
different layout variations include image scaling to fit more participants on
screen or to emphasize some participants over others, occlusion by user interface
elements or by picture-in-picture functionality, and issues from differing aspect
ratios. The picture-in-picture functionality is used to emphasize the main
participant by giving it more screen estate and secondary streams can be laid
on top of this main image. Figure 2.2 shows an example how different aspect
ratios between sender’s video capturing device and receiver’s display device
may be taken into account. The received image may need extra borders to be
added to the top and to the bottom to be able to have the whole image visible
on the screen. This, however, leads to unused screen estate. The received
image may also be cropped or stretched to fill the whole screen area that is
allocated for the image. Here cropping leads to visually visible lost image data
and stretching makes people look too thin or too thick[22]. These operations
can be combined and used intelligently to maximize the used screen estate
with minimal distortions to the actually interesting parts of the image.

2.3.1 Scaling

Image scaling, or spatial interpolation, is one of the fundamental operations
that enables showing the same video image on different resolution displays.
Downscaling also makes the video image easier to compress for low bandwidth
links. It also enables a better use of the limited screen estate by fitting multiple
streams images on one screen. The scaling of the video stream can be done
multiple times: when capturing the video, scaling the captured video for

2.3. USER INTERFACE 19

(a) (b)

Figure 2.3: Scaling the picture of Lenna by a factor of 4 in (a) the spatial
domain by bilinear interpolation and (b) the discrete cosine transform domain.

transfer encoding, in the transcoding phase, while generating the output
layout, and when displaying the final image on the display device.

The real-time nature of video communication limits the choice of image
scaling algorithms to ones that are fast enough to be used as a part of real-time
processing. Still, there are multiple different algorithms in use that will result
in slightly different scaled images[23]. To demonstrate the difference between
various scaling methods, figure 2.3(a) shows the result of scaling with bilinear
interpolation in the spatial domain and figure 2.3(b) shows the result of
scaling the same image in the transform domain[24]. Bilinearly interpolated
image results in blurring seen in the high detail areas, whereas scaling in the
transform domain maintains the high detail areas sharp but results in rippling
seen in the flat areas.

2.3.2 Frame rate changes

Video image may also be distorted by frame rate changes by temporal
interpolation[18]. Frame rate changes are needed for similar reasons as image
scaling, namely to be able to support different client capabilities, transport
media, and display device refresh rates. For example, a cheap web camera may
have varying capture rate depending on the lighting condition of the room,
but the encoder expects constant frame rate to be able to maintain desired
bit rate and frame size. This stream may be then mixed with other streams
that have different frame rates to form a single combining stream with the
desired layout. This can then again lead to frame rate changes depending on
the receiving client capabilities. Then the receiving client needs to display
this video stream on its display device that has a certain refresh rate that

20 CHAPTER 2. VIDEO COMMUNICATION SYSTEMS

?

(a)

(b) (c) (d)

Figure 2.4: Frame rate change sampling methods with (a) a timeline where
the frame sample lies between two existing frame locations. Sampling by using
(b) the latest frame, (c) the weighted average of the two closest frames, and
(d) motion compensated interpolation.

depends on the frequency at which the displayable data is read from the frame
buffer[25].

Similarly, as for spatial interpolation, there exist multiple methods for
temporal interpolation that have their own different compromising features[18].
Figure 2.4 demonstrates various temporal interpolation methods that may
be used for frame sample creation in a case where the new frame sample
lies between two existing frames. The most obvious method is to use the
latest frame that is before the current sample point (figure 2.4(b)). More
computationally demanding methods based on higher order filters use more
than one frame as the basis for interpolation. We can, for example, create
a linear interpolation filter that uses the weighted average of the temporal
distance of the two closest frames to create an interpolated frame (figure 2.4(c)).
And one less used scheme, that is especially useful for increasing the frame
rate, is to use motion compensated spatiotemporal interpolation[26] shown in
figure 2.4(d). Motion compensated interpolation tries to infer the movement
of the content from existing frames and create new frames based on that.

For video communication applications, however, the more advanced inter-
polation methods that depend both on the past and future frames around the

2.4. ENCODING 21

application color space and image format

video encoder

video container network

video capture
preprocessing,
filtering

color space
conversion

chroma sub-
sampling

entropy encoding quantization data transform

filtering, motion and
spatial prediction

bitstream genera-
tion

transport container-
ization

transport medium

Figure 2.5: Image manipulation steps and manipulating components responsible
for making the original captured image suitable for network transfer.

sample point obviously add delay to the encoding process. Therefore, even
though those methods might produce better results, especially for dynamic
parts of the image, the delay they add will definitely not be welcomed.

2.4 Encoding

Video is encoded to some compressed format, as the uncompressed video data
requires too much bandwidth to transfer it affordably in real time over long
distances. Nowadays most popular video encoders for real-time communication
are based on MPEG-2[27], H.261[28], MPEG-4 part 2[29], H.263[30] or MPEG-
4 part 10/H.264[31] standards where the video compression algorithm throws a
part of the original image data away with the goal of minimal visible distortions
for natural images[6]. This makes it harder to know what to expect from the
resulting video data when we want to encode information to it.

The general transform based lossy video encoding process consists more
or less of five steps that result in data rate reduction[5], shown in figure 2.5.
First, encoding begins by transforming the source image to an appropriate
color space. Then the actual data reduction process usually begins by reducing
the resolution of color information encoding chroma channels. This data is

22 CHAPTER 2. VIDEO COMMUNICATION SYSTEMS

then passed to transform coding based encoder that then tries to maintain as
much visually relevant features as possible[32].

Transform based encoding begins by transforming the image, or parts
of the image, so that the most relevant visual features can be encoded with
the smallest amount of data and the less relevant image features get thrown
away in the process[5, 33]. Transformation leads to a representation that
provides coefficients describing the image features that then are quantized
to the selected accuracy. Quantization reduces the effective accuracy of
transformation coefficients and leads to the loss of visually less important
features for the transformed block. Usually there also is high temporal similarity
between subsequent frames, and therefore the difference between different
frames can be transformed and quantized in a similar fashion as encoding
pure source image data. This may also take the motion of objects between
different frames into account to reduce the encodable difference between
temporally close frames. And finally, when the image data has gone through
these lossy encoding steps, it is encoded for transfer by using lossless encoding
techniques[5]. Following subsections focus on what causes the image distortion
in the various encoding phases.

Figure 2.6: Absolute color channel value differences in comparison to the
original resulting from converting correctly and incorrectly between Y′CBCR

and R′G′B′ color spaces.

2.4. ENCODING 23

(a) (b)

luma sample
chroma sample

Figure 2.7: 4:2:0 chroma subsampling with (a) interstitial sample placement
and (b) cosited sample placement. Dashed lines show the extent of a chroma
sample.

2.4.1 Color space conversion

Video input devices and display devices generally handle colors in the gamma
corrected nonlinear R′G′B′ color space with red, green, and blue color channel
components. For data transfer purposes these color channels are then con-
verted to the Y′CBCR color space with one luma, and blue and red chroma
channels[32]. The result from this conversion may vary depending on which
conversion method is used, usually ITU-R BT.601[34] or BT.709[35]. Fig-
ure 2.6 demonstrates the difference between the original correct color values,
even when the color space conversion is performed correctly, and when the
assumption for the variant of the Y′CBCR color space is wrong. This shows
that even though we have the correct color space conversion method in use,
we still get a small difference between the original and once converted R′G′B′

color values.

2.4.2 Chroma subsampling

One of the first intentional data reduction steps in video encoding is chroma
subsampling. In chroma subsampling the resolution of the two chroma channels
is reduced. This can be done because the human vision does not perceive the
loss of the color detail as strongly as the loss of detail in the luma channel[32].
The usual resolution reduction method for distributable video content is to
use 4:2:0 chroma subsampling where the number of chroma samples is reduced
to one-fourth of luma samples. This sample reduction method, however, has
various alternatives for doing the actual subsampling, for placement of the
subsampled values in relation to luma samples, and for interpolation between

24 CHAPTER 2. VIDEO COMMUNICATION SYSTEMS

(a) (b) (c)

Figure 2.8: Blocking and blurring artifacts created by low bitrate encoding of
(a) the original image by (b) H.263 encoder and (c) H.264 encoder.

samples. Although small variations in the subsampling generally do not lead to
easily discernible differences, they still result in numerically different values[36].

To demonstrate two widely used 4:2:0 subsampling methods, figure 2.7
shows an example of two different chroma subsampling implementations.
Figure 2.7(a) demonstrates a situation where a chroma sample is placed in
the middle of four luma samples. Here a simple averaging filter can be used
for the subsampling. On the other hand figure 2.7(b) shows the case where
chroma samples are placed vertically between luma samples but horizontally
coincident with luma samples. Then we need a weighted averaging filter to
create chroma samples.[32]

2.4.3 Transform coding and quantization

Image data is usually transformed to more compressible format by using some
form of reversible transform coding where parts of the image are transformed
to a set of coefficients that are then quantized. The goal of the selected
transform is to focus the most important visual data on the least amount
of coefficients. This way stronger quantization can be used to eliminate the
less important coefficients, that then result in reduced information content.
This leads to a data representation that is then easier to compress by lossless
compression methods[33].

In the most often used discrete cosine transform based video compression
methods heavy quantization can cause distortions like blocking, edge busyness,
mosquito noise, and quantization noise[37]. Blocking results in clearly visible
separate blocks in the image, demonstrated in figure 2.8(b). This results
from independent block based transformations that do not take dependencies
between neighboring blocks into account. Quantization noise comes from
coarse quantization steps and looks like random noise[38]. Edge busyness

2.4. ENCODING 25

and mosquito noise are distortions resulting from the compression process
that happen near sharp edges and can lead to image noise near edges or to
time-varying edge sharpness[39].

Transform coding can be applied either directly to image blocks of the
original image or to the difference between video frames[5]. When the transform
coding is applied to the original image, it is called intra-frame coding. Intra-
frame coding results in compressed data that is completely independent
of surrounding video frames. This is needed as a starting point for image
display and can also be used when recovering from data corruption. When the
transform coding is applied to the difference between images, the difference is
calculated between an already decoded block and between a block in some
other frame. This is called inter-frame coding and it enables high compression
ratio for video by taking the advantage of the slowly changing video data
between consecutive frames. Inter-frame coding, however, at the same time
makes the video stream vulnerable to lost packets and data corruption, as
a single error will propagate until the affected image area is refreshed by
intra-coded image data.

2.4.4 Transcoding

Video transcoding is re-encoding the whole or parts of the video stream,
generally to some other video format or to change attributes of the current
format. These changes may include bitrate changes, frame rate changes, or
frame size changes[5]. This is usually done to support variations in network
capacity and client capabilities.

The most obvious way to do transcoding is first to decode the encoded
stream and then apply the wanted operations to the decoded stream. These
operations may include scaling, frame rate changes, additional content addition,
and deinterlacing. After these modifications are done, the stream is then
re-encoded to the new format. This, however, results in additional image
distortions in addition to the distortions that already come in the originally
encoded video stream.

Video stream modifications can also be done for the transformed data
without fully decoding it first, or by re-using some aspects of the original
encoded video data, like motion vectors. These both tricks generally are done
to reduce the computational burden of re-encoding, but can also lead to
additional loss of quality. This loss of quality can result from less accurate
motion vector data or from losing important visual features from the transform
coefficient modifications that would otherwise be captured by the encoder if
done for the decoded image. Alternatively, only a part of the frame can be
transcoded so that only the modified image parts are decoded and re-encoded,

26 CHAPTER 2. VIDEO COMMUNICATION SYSTEMS

and the untouched parts are passed through as they are. This trick to save
processing time may be useful when doing content insertion, like adding
subtitles or providing picture-in-picture functionality[40].

Transcoding generally also adds some extra delay to video stream forward-
ing. Even though this is not directly related to quality degradation, it will
affect the perceived video communication quality. Therefore it is desirable to
make sure that all aspects of transcoding can be done as quickly as possible
without adding noticeable extra delay.

2.4.5 Other distortions

In addition to these distortions that generally happen for every block based
encoder, various encoder and implementation specific distortions exist. For
example in-loop deblocking filter[41] used by the H.264 encoder causes blurred
features that are visible from figure 2.8(c). Also the H.265 encoder[42] includes
a different deblocking filter than the preceding H.264 encoder, and two
additional optional filters to reduce distortions caused by the preceding
encoding steps[43, 44].

Implementation specific errors can also come from requantization errors
in the transform phase due to different quantization step sizes between the
encoder and the decoder[45], especially in older video encoders. This will
lead to small differences in what the encoder and the decoder think is the
reference image. This can cause cascading errors that lead to a distorted output
image. Newer video encoders however eliminate these kind of implementation
specific differences by removing the need to use floating point calculations,
whose accuracy is machine dependent, by unambiguously defining fixed point
encoding and decoding steps[46].

Chapter 3

Encoding data into images

Data generation is an often used approach in software testing when we try
to see if some information properly flows through the system under test. In
this method we generate a data pattern that is injected to input data and is
then searched from the output data. We can use similar approach for testing
video communication applications, where we encode data into the input video
streams. As video stream consists of individual frames, we can encode the
current stream and the frame number to the input stream. Then we can
detect and decode the encoded data and use this information to find out what
part of which video stream is visible, and where individual streams are in the
resulting output.

This chapter will first look at the requirements that we have for testing a
video communication system. This includes the resolution, frame rate, and
bitrate limits that define how much data we can theoretically encode in the
worst case situation. Then we take a look at a few methods for encoding
information into images. These methods give us a basic understanding
upon which we can then create our own data encoding method for video
communication system verification.

3.1 Requirements

Video communication systems have their own requirements for what kind of
processing the embedded data needs to tolerate to be successfully decoded.
Chapter 2 describes what happens to the image when it goes through the
video communication system. If we put some numbers to all those phases, we
can have some guidelines that we can use when selecting the data encoding
method.

27

28 CHAPTER 3. ENCODING DATA INTO IMAGES

Section 2.3 describes how the user interface can look and what limitations
the data embedding process needs to overcome. The picture on the screen can
be divided into smaller subpictures that take up somewhere between 1/4 and
1/5 of the screen width and height. This leads to the need to know the spatial
position of a subpicture. If we look at the example frame sizes that video
encoder standards[30, 31] or a recommendation for video terminals[47] give,
we can see that 128× 96 luma pixels often is the suggested minimum image
resolution. Also 128 pixels is the minimum resolution for many mobile phone
screens[48]. Thus we can consider 128× 96 pixels as the minimum desirable
video resolution that we can target. Also if the screen is divided into even 1/4
sized subpictures, this gives us 24 pixels on the shorter side for data encoding
in the luma channel. Chroma subsampling, described in section 2.4.2, affects
the resolution of color information encoding chroma channels. If we want to
use these channels for information encoding, we need to be prepared for 1/4
resolution loss in them. The maximum realistic video resolution highly varies
depending on the video encoding standard, its level, available bandwidth, and
on the resolution that the receiving end supports. At the time of this writing
1920× 1080 is the highest supported resolution in decently priced consumer
devices. This leads to 11.25 times vertical resolution increase when scaling
upwards and 1/45 resolution decrease when downscaling for small subpictures.
The data encoding method should survive such resolution variations.

The bitrate of the video stream provides the upper limit how much unique
data we can theoretically push through the video encoding pipeline. This is
linked to the video frame rate that tells us how much data we can have in one
frame on average. If we look at the guidelines in the H.264 specification where
the maximum frame rate on the lowest encoding level is 30.9 frames/second for
resolution of 128×96 and the minimum bit rate is 64000 bits/second this gives
us the average data encoding capacity of 2071 bits/frame. If we combine 4× 4
video streams to these frames, this gives us at most 129 bits/stream/frame as
the upper limit that we can transport. However, as we are mainly transferring
the difference between frames, as explained in section 2.4, we can treat that
limit as the limit how much we can change between different frames on average.
The video container and transport protocol headers, however, reduce the
available capacity for data encoding somewhat. Anyway, we should be able to
encode around 20 bits of information/frame so that we can do load testing
for several dozens of clients for several minutes at about 30 frames/second
without having to worry about the frame counts going around.

The data decoding speed is also an issue, as the detector should be fast
enough that we can run the verification in real-time after video decoding or
while doing screen capture. This is to make sure that the expected resource
usage, verification setup complexity, and the time spent on verification stays

3.2. INFORMATION ENCODING 29

low enough so that we can use automatic verification as the standard part in
testing.

3.2 Information encoding

When we are looking at the resulting video stream from functional verification
point of view, we can think of every frame from each stream as a separate
discrete data point. We can determine that the video communication system
transfers the image correctly if we can recognize these data points from the
output despite distortions created by video transmission, mixing, and encoding.
Besides treating single frames as discrete data points, we could also make
the encoded data span multiple frames. This is used in video watermarking
techniques[18], but it generally only is used to identify individual streams, not
individual frames.

We can detect a range of faults if we can determine which input video
streams are in the resulting output image, where they are located, and at
which frame they are in. This information enables us to verify that correct
streams are forwarded to correct clients, the encoding delay corresponds to
what is expected, and that the resulting stream locations on the display
correspond to what is expected. For example, if the video communication
application is used in a presentation where the moderator chooses the main
content stream from multiple choices, then the image of the selected stream
should replace the old stream. This can be verified by checking that the image
area that was previously occupied by the other stream has now changed to
the requested one.

This section takes a look at methods that can be used for visualizing
discrete valued data in such a way that the information that is encoded in the
visualization can be read back. In the case of machine readable data, the ease
of implementation and reading reliability are quite essential factors. There
also are other data visualization methods besides the ones presented here[49],
but the ease of visualization generation, the reading reliability, and locating
accuracy of discrete values is not that high. This, for example, eliminates
changes in textures as a data representation method, even though textures
can be procedurally generated from the underlying data[50].

The data encoding methods examined here are glyphs, text, digital water-
marks, and barcodes. Glyphs are mainly for human consumption and text is
both machine and human readable method for discrete data encoding. Digital
watermarks and barcodes, however, are designed to only be machine readable.

30 CHAPTER 3. ENCODING DATA INTO IMAGES

(a) (b) (c)

Figure 3.1: Different glyph types that can be used for multi-dimensional data
representation. (a) Arrows, (b) profile graphs, and (c) stars.

3.2.1 Glyphs

Glyphs are graphical objects for presenting multi-dimensional discrete data
values. They usually are designed in such a way that they can be rapidly
and clearly distinguished from each other. This is done by designing glyphs
to provide relevant information about the task at hand by using features
that quickly enable distinguishing objects with the wanted property from the
environment and other objects[49, 50]. Features that provide clear distinction
can be position, color, shape, orientation, texture, and motion. All features are
not independent of each other, as for example displaying orientation depends
on the shape of the glyph. The goal to keep glyphs distinguishable from each,
and the fact that different features are not independent from each other, limits
the data encoding capability and presentation accuracy of glyphs[49].

Figure 3.1 shows an example of three different types of glyphs. Arrows in
figure 3.1(a) can encode information in their direction, color, and size of the
different parts. Profile graphs in figure 3.1(b) all encode the same information,
where colored graphs also encode the intensity value as the color value. Each
bar in the profile graph encodes value of one dimension and more dimensions
can be easily added by adding more bars. More dimensions naturally make it
harder to search for specific patterns for one dimension, as other dimensions
interfere with the pattern. These problems can be somewhat mitigated by
correctly ordering the displayed dimensions and adjusting the location of
different glyphs in relation to each other[49]. Star graphs in figure 3.1(c) also
enable the visualization of somewhat freely selectable dimensionality and have
similar problems and remedies as profile graphs when the dimensionality and
representable value count increases[49, 50].

Glyphs as a data encoding method are, however, mainly designed for
humans. Even though there exist data encoding methods that encode data in
glyph like fashion[51], they are closer to a specific barcode type than anything
that can be read by a human.

3.2. INFORMATION ENCODING 31

3.2.2 Text

Text is the most used human readable form for visually identifiable information
encoding for discrete data when accurate data representation is needed.
Computers can recognize text by using optical character recognition engines
that take images as their input and output the recognized text and its
location[52]. This enables the use of text as data encoding method that can
be recognized both by humans and, to a certain extent, a machine.

Written text for wider distribution consists of character combinations
whose look is generally determined by the font in use. Humans generally have
no problems in adjusting to slight variations in character shapes. Optical
character recognition engines, however, need to be general and adaptive enough
to be able to recognize text that is written in different fonts[53]. Even though
most work on optical character recognition is done for the Latin alphabet, the
challenges with different fonts has still led to creation of special fonts that are
specifically made to make the optical character recognition task easier and are
still readable by humans[54, 55].

Fonts created for optical character recognition, however, are not optimized
for the rectangular sample grid that forms the picture on the screen. This
leads to a situation where we need to use larger characters to be able to
reliably recognize them. This reduces the data encoding density of text written
in such fonts. If we, on the other hand, use small fonts that are designed to be
used on a computer display[56, 57], we can encode the data by using text that
takes smaller area than using more rounded fonts that are not designed for
screen use.

Even though text can be used to represent machine decodable information,
methods designed purely for machine reading generally offer much higher
information encoding capabilities and robustness than encoding data as text
and then using optical character recognition for detection[58, 59].

3.2.3 Digital watermarks

Digital watermarking is embedding data to the host signal in such a way that it
can be read back by algorithmic means and does not change the host signal in
a perceptible way[18]. Digital watermarks are generally designed to survive one
or more intentional or unintentional signal manipulation operations. This way
they offer a good overview of methods for data embedding and solutions and
compromises that need to be used for watermarks to survive image distortions
that happen during the video transmission process.

Digital watermarking schemes can be divided into two major categories,
depending on their need to have the original signal or some derived attributes

32 CHAPTER 3. ENCODING DATA INTO IMAGES

available. Having the original data or derived features available makes it
possible to focus just on watermark detection. This reduces the need to
guess where the watermark data might be in the image and what distortions
are applied to the image as these can often be compensated for. Needing
the original data to be available naturally limits the applicability of such
watermarking scheme. Schemes that do not need the original data or derived
attributes have much wider applicability. Naturally, not having the original
data available makes detection harder and these watermarking schemes need
to have some other method to overcome image distortions than comparison
with the original image.[18, 60]

Watermarking schemes can be classified to systems that only detect if the
signal under inspection is watermarked with a certain key or not. Extension
to this is to embed multiple bits of data into the watermarked signal. This
naturally leads to a need to decode this embedded data in addition to
watermark detection. This embedded data may be encoded in a format that
is intended to be decoded straight away, like in watermarking schemes that
rely on correlating the watermarked data with some known signal. Another
possibility is to embed data in a format where the watermark decoding process
does not directly result in the actual data, but in something from which the
actual data can be detected[60], like an embedded image in some transform
domain[60, 61].

These data embedding schemes are then subjected to various quality
degrading image manipulation operations like cropping, rotation, scaling,
lossy compression, and color adjustment. The data can also be subjected to
additional intentional watermark removal operations, like averaging multiple
differently watermarked copies. This makes watermarking a trade-off between
robustness against distortions, the amount of data that can be encoded, and
the amount of perceptible changes that the watermarking scheme introduces to
the original signal[60]. As the goal of watermarking often is to make itself hard
to notice, this makes data embedding hard, as lossy compression algorithms
aim to remove the imperceptible features to increase the compression ratio.
This leaves very little room to embed data where the embedding is hard to
notice. Also watermark embedding and decoding speed needs to be taken into
account. Even though more expensive watermarking techniques may enable
more robust watermark detection and extraction, in practical applications
their price on the performance may be too high, especially for on-line video
watermarking and detection[62].

Besides making the watermarking scheme resistant to various distortions
in itself, there still is possibility for individual bit values to get improperly
decoded. There are two main approaches for achieving robustness against
incorrectly decoded data in different watermarking schemes. The first is to

3.2. INFORMATION ENCODING 33

embed multiple copies of the same data into the target signal and the second
is to use some more sophisticated forward error correction code that can
detect and correct errors that occur in the decoded data, or some combination
of these two[60]. Embedding the same data multiple times may also enable
more robust detection, as partial data loss does not remove the features that
may be used for watermark detection[63, 64].

Often used watermarking methods may be divided to several general
classes. First, pixel values can be directly modified in the spatial domain
and modifications are kept small enough that the embedded changes are not
noticeable. These methods include correlation based methods that embed data
by using pseudorandom sequences that are then added to the original image
data[65], possibly taking the local image features into account[5]. Then there
are transform based methods that embed data in some transform domain to
the image. This embeds the transformed data over larger area and at the same
time gains robustness to image manipulation operations against which the
used transform is robust[65]. Although these transform domain based methods
do not always directly map to certain locations in the spatial domain, often the
same methods that are applicable to spatial domain hiding are used to hide
detectable patterns in the transform domain[65]. Then there are combinations
of these two methods, where the properties of the used image compression
algorithm are used for data hiding, like embedding hidden data in the middle
frequencies of 8× 8 discrete cosine transform blocks of the JPEG compression
algorithm[66]. Salient image features, like strong corners, may be used as
locations for image watermarks and the data can then be hidden around
these image dependent points[67]. These points can also be geometrically
warped to lie near some pseudorandom pattern over the image[68]. When
image resolution is high enough, like with high resolution printing, then the
watermarked information may be included in the image creation process itself.
Instead of using dots as the basic printing pattern, printed image can be
generated by using data encoding glyphs as color elements[51]. Video provides
additional possibilities for watermark embedding, as the watermark may be
divided along multiple frames in the temporal direction. This can be done
by using properties of video encoding, like motion vectors, for watermark
embedding that are not available for static images[69].

Watermarking methods provide various data embedding possibilities that
may be used to embed data into existing video streams or to create completely
new video streams that just include the embedded data. Embedding data
into an existing video stream creates possibility to verify that the video
communication system works correctly with video streams that do not look
artificially generated. On the other hand, using just the data embedding part
of watermarking scheme enables the creation of more robust test cases that

34 CHAPTER 3. ENCODING DATA INTO IMAGES

Linear 2D stacked 2D matrix 2D color matrix

Figure 3.2: Evolution of barcodes from one-dimensional linear barcodes to
color coded two-dimensional barcodes.

survive greater variety of distortion causing operations, as the perceptual
invisibility part does not need to be taken into account. Consequently, many of
the techniques that give watermarks their robustness and machine readability
are also used in barcodes, whose properties are described next.

3.2.4 Barcodes

Various types of barcodes are the most often used method for machines to
identify objects[52]. Barcode types range from encoding short identifiers[70–72]
to barcodes that are designed to have enough capacity to encode hundreds or
thousands of bytes of arbitrary data[73, 74]. Figure 3.2 shows how barcode
formats have evolved from linear one-dimensional barcodes along with reader
device capabilities to pack more information in the same space, first by using
the second dimension for data encoding, and then encoding more bits per
symbol by using color to encode data. In this section we are interested in
the general properties of two-dimensional barcodes that are often used for
detectability, error resilience, and information packing.

Barcodes usually consist of basic building blocks that make them machine
readable. Blocks that are often encountered with different types of barcodes
are visible from figure 3.3. The basic data measurement unit of a barcode is
module. It defines the smallest discernible data unit from which the barcode
is constructed. Modules may have different shapes, of which dot, triangle,
square, and hexagonal patterns are the most often used ones. Modules are
then used to form codewords that are divided to metadata, data, and error
detection and correction codewords. These may then be encoded in different
ways depending on their location in the barcode area and the general data
content. In addition to data encoding areas, barcodes also have patterns to
help with the code location and alignment. All these blocks with rules for
their formation make the defined barcode format, usually called symbology.

3.2. INFORMATION ENCODING 35

Finder pattern

Synchronization pattern

Quiet area

Data, error correction, and metadata modules

Figure 3.3: Typical areas of a two-dimensional barcode.

Finder pattern Synchronization pattern

Figure 3.4: Different functional areas illustrated in different barcode types
that aid in code area recognition and processing.

Fast machine readability is often the design goal for barcodes in situations
where there are real-time constraints for barcode processing. To help with
this, barcodes often include certain functional components to make their
detection and data decoding easier and more robust. Three often encountered
types of such areas are synchronization patterns, the quiet area, and finder
patterns[73–78], shown in figure 3.3. Synchronization patterns often consist
of timing patterns that are alternating light and dark colored modules, and
sometimes there are predefined module patterns in certain locations that help
in distortion detection. Figure 3.4 shows examples of such areas in various
commonly encountered barcode symbologies. The quiet area is an evenly
colored, often white, area around the visible barcode that helps to differentiate
the barcode from the surrounding environment. Finder patterns are used to
help with barcode location and orientation, as barcode search can be reduced
to search for the finder pattern. Larger barcodes may include synchronization

36 CHAPTER 3. ENCODING DATA INTO IMAGES

Equilateral triangles

Squares Loosely spaced dots

Honeycomb
Divided concentric circles

Figure 3.5: General module layout styles used in different barcode types.
Cross (×) indicates the module center and dashed line shows the extent of
the module area.

patterns to help with small location errors and distortions that occur when
the underlying surface has slightly changing geometrical properties[79, 80].
Additionally, synchronization patterns provide information about the data
encoding module size over the whole barcode area. And when the barcode
gets too big, some standards provide possibility to divide the larger barcode
into multiple smaller ones and this way avoid the need to read the whole large
code area at once[73, 74].

Besides being machine readable, barcodes often have a goal to encode
the information as densely as possible over the small area that is reserved
for them. This enables barcodes to have much higher information encoding
density than using text and optical character recognition based decoders[58].
For example, experiments with information encoding on microfilms revealed
that a checkerboard pattern based matrix type binary barcode[81] was able to
encode over 7 times more information over the same area than UUEncoded[82]
binary data that was read by an optical character recognition engine[59].

High information storage density is generally achieved by packing constant-
sized data modules on a two-dimensional grid. Such barcodes are often called
matrix type barcodes. An often used alternative construction strategy is to
stack multiple one-dimensional barcodes on top of each other, thus creating
stacked two-dimensional barcode[76, 83] (figure 3.2). These stacked barcodes
often have a lower areal density than matrix type barcodes with the same

3.2. INFORMATION ENCODING 37

printing accuracy, as the stacked barcodes have redundant data in the stacking
direction.

There are also a few grid types that are used for laying out barcode
modules. The most often used ones are visible from figure 3.5. The often
encountered rectangular shape regular grid uses square modules[73, 74, 77].
This enables displaying such barcodes on display devices with similar grids, like
on screens of desktop computers and handheld devices. Additionally, creating
and reading such a grid will map quite easily to the familiar two-dimensional
image processing world, as row and column start points lie on a straight
line. Another alternatives that are also used are triangular[78] and hexagonal
grids[75], possibly with disconnected circular module shape to enable high-
speed barcode printing[84]. Encoding modules in a polar-coordinate fashion
around the center of a circle has also been used to make the barcode more
robust against rotation[85].

The actual data is then divided to larger codewords that represent integer
numbers. Codewords are then encoded by using modules that the barcode
format provides. The format of modules for the encoded data often has a
few design goals that it tries to fulfill. There often is interest to avoid large
areas of the same color to make the module grid more visible, even though
synchronization patterns provide clues about the grid arrangement. One way
to achieve this is by changing the module pattern in a controlled way so
that the appearance probability of the undesired pattern is low. Another
way is to use line coding principles of data transmission methods and many
one-dimensional barcodes, where more modules are used for the data encoding
than is strictly required[71]. These same module value changing principles
that are used to avoid large areas of the same color can also be used to avoid
areas that look like functional components of the barcode, such as finder
patterns[73].

As barcodes are likely to be damaged, or the scanner may read module
values incorrectly, there are a few error resiliency methods in place to minimize
the probability for unsuccessful or incorrect reads. First, the modules encoding
a single codeword are often arranged in such a pattern that a single small stain
damages as few codewords as possible. This often leads to an arrangement
pattern where codeword modules have roughly equal horizontal and vertical
dimensions. Then when codewords eventually get damaged, this damage is
detected and corrected by using an error correction methods, like BCH or
Reed-Solomon codes[73, 74, 76, 77]. Another possibility is to use checksums
to indicate erroneous reads and try again until a successful read is achieved.
However, this is not used for two-dimensional barcodes as the primary error
correction method, as they do not use redundant data encoding as the primary
method for error resiliency.

38 CHAPTER 3. ENCODING DATA INTO IMAGES

3.3 Method of choice

Although there are multiple methods that can be used to encode data into
images, most of them are not suitable for highly varying image sizes and low
resolutions. Even though glyphs and text are human readable data encoding
methods, they need a relatively high resolution for each encoded element.
Glyphs also have the problem that automatically recognizing them depends
on specific shapes that are used for the data encoding. This will result in
a quite glyph specific and probably complex detector. Text recognition by
optical character recognition is quite researched problem, although creating an
optical character recognition engine is generally far from simple[53]. Therefore
it is better to focus on codes that are meant for machines to read and only
provide human readable codes as additional information.

From machine readable codes, image watermarking mostly includes tricks
to make watermarks invisible to the naked eye. Watermarks also suffer
from being easily damaged when the image resolution changes drastically.
Watermarking methods often divide the encoded information over the whole
image area and consequently lose the spatial information that is useful for
layout verification. As barcode is used as the data carrier in some image
watermarking schemes[61], this strongly suggests that the method that can be
used as part of verifying video communication systems should be based on a
barcode style information encoding method. This is the method of choice in
this study.

Chapter 4

Implementation

This chapter describes the structure of the custom data encoding barcode
and the implementation of its detector. Section 4.1 introduces motivation for
custom barcode design and the structure of the barcode that is optimized for
verifying video communication applications. Section 4.2 takes a quick look at
the literature about barcode detection. Then section 4.3 explains the design
of the detector for this custom barcode format.

4.1 Barcode design

Barcode design is generally a compromise between the barcode size, ease of
detection, data encoding capacity, and damage resistance. We should first
check if existing general use barcode standards are suitable for our use.

Some existing publicly available low-capacity general purpose small barcode
standards are visible from figure 4.1. These are compared to the custom
barcode that is described in the upcoming sections. The chosen existing
barcode standards were selected for their ability to encode information in a
small space and for the reason that their structure is based on a square grid.
These barcode images also show features that are often used in other barcode
standards. Compact Aztec code[77] (figure 4.1(a)) uses a finder pattern that is
at the center of the barcode and data encoding modules are placed around it.
Micro QR code[73] (figure4.1(b)) is a typical barcode that has a distinct finder
pattern at a corner of the barcode area. These barcode types usually have the
finder pattern in more than one corner for error resiliency. Finally, the Data
matrix[74] (figure 4.1(c)) provides an example of a barcode where the actual
data is inside the barcode area and has a finder pattern that surrounds the
data area. These types of barcodes make it possible to search for rectangular
objects from the image and have quite well defined boundaries. The downside

39

40 CHAPTER 4. IMPLEMENTATION

(a) 15× 15 (b) 13× 13 (14× 14) (c) 12× 12 (14× 14) (d) 9× 9

Figure 4.1: The size of the area that different barcode standards take when
having the same module size. Additional 1 module wide quiet area is marked
as gray, if required (in parenthesis). Each barcode encodes around 20 bits of
data. (a) Compact Aztec code, (b) Micro QR code, (c) Data matrix, (d) the
barcode introduced in this section.

of these types of barcodes is the fact that they often need a small quiet area
around the barcode contents so that the finder pattern stands out from the
background.

Section 3.1 gave us some requirements and boundaries for the encodable
data amount, resolutions, and the data transfer capacity of a video stream. We
established that about 20 bits would be enough to distinguish streams from
each other. The size of the area that 20 bits requires for each barcode standard
is shown in figure 4.1. We can further see from figures 4.2(a)–4.2(d) how these
barcode images look like when they are downscaled to 24× 24 pixel area. This
corresponds to the smallest realistic subpicture size described in section 3.1.
In addition to just scaling, figures 4.2(e)–4.2(h) show how these barcodes
look like when they are compressed with 20 % quality JPEG compression
(see appendix A). Here we can see how the compact Aztec code and Micro
QR code are noticeably suffering from the small module size. Especially
with the compact Aztec code in figure 4.2(e) there are module locations that
dark enough to be considered black modules, whereas in the uncompressed
figure 4.2(a) there clearly are white modules in those areas.

An example how barcodes can be used to test a video communication
system is shown in figure 4.3. Here we have a 13-participant conference with
high and low resolution versions. We might, for example, want to verify that
the layout for such a conference stays the same for each video resolution.
Figure 4.3(c) then shows how barcodes would look like for such a high
compression and low resolution image. Here the smallest subimages are 24
pixels high with the same compression ratio as in figure 4.2. As the module
size of the barcode is relatively large even for the smallest subimages, we can

4.1. BARCODE DESIGN 41

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: A small barcode where (a)–(d) each barcode area is scaled to fit
24× 24 pixels with a small offset and then (e)–(h) compressed with JPEG
quality set at 20%. Module sizes in pixels (a) 1.6, (b) 1.8, (c) 2.0, and (d) 2.7.

(a)

(b)

(c)

Figure 4.3: A 13-participant conference as (a) 1440× 1080 pixel high quality
version, (b) highly compressed 128× 96 pixel low quality mobile version, (c)
highly compressed 128× 96 pixel low quality mobile version with encoded
data for automatic layout determination.

42 CHAPTER 4. IMPLEMENTATION

(a) Compact Aztec
code

(b) Micro QR code (c) Data matrix (d) Presented barcode
design

Figure 4.4: Damage caused to codewords (red) and the finder pattern (blue)
by cropping 4:3 image to fit 16:9 screen (gray area). (a) Finder pattern is
fully visible, but 12/17 = 70.6% of codewords are damaged. (b) 6/10 = 60.0%
of codewords are damaged and partial damage to the finder pattern. (c)
No codeword damage, but over half of the finder pattern is destroyed. (d)
Depending on the chosen codeword layout and size (figure 4.7), 4 – 8/15 = 26.7
– 53.3% of codewords are damaged and partial finder pattern damage.

be somewhat confident that this could survive even higher compression ratios
than the one in figure 4.3(b).

Cropping is an image manipulation operation that cuts out sides of the
image. This is usually used to make the image fit a different aspect ratio
screen without causing black borders. Figure 4.4 shows a situation where we
crop often used 4:3 aspect ratio image to fit 16:9 aspect ratio screen. This
cuts out 25 % of the image and causes a large amount of damage to barcodes
that use the whole vertical area to maximize the visible module size. Both
Aztec code and Micro QR code lose a large enough number of data encoding
codewords that their error correction is unable to correct the damage. Data
matrix does not really suffer any codeword damage but the finder pattern
loses all the horizontal features and makes it impossible to detect the barcode
if the detector primarily relies on the finder pattern shape. The suggested
barcode shape loses only part of the finder pattern. The codeword damage
depends on the codeword size and on the placement of codewords, that will
be discussed in section 4.1.3. Occluding elements on the sides of the picture
can similarly hide a large area of the Micro QR code’s finder pattern.

Damage resistance against cropping and occlusion can be achieved simply
by ensuring that there is enough empty space around the barcode and that
the barcode includes enough data so that the relative damaged bit count stays
low enough. This, on the other hand, leads to a smaller module size, and
therefore to a lower resistance against lossy image compression and higher
demands for the minimum resolution with the barcode is still recognizable.

4.1. BARCODE DESIGN 43

4.1.1 Modules

Module is the basic building block that defines the shape and information
encoding capabilities of a barcode. Usually the possible module shape and
color choice depends on the available printing equipment, surface, scanning
device, and scanning environment. We know that the common video encoding
standards have a rectangular grid for samples forming the picture. This grid
usually has an equal horizontal and vertical difference between image sample
points. However, due to different image scaling strategies between resolutions,
we can not always assume that this is the case. Anyhow, this gives us a strong
indication that we should use rectangular modules to make them match the
shape of the image grid.

Then we have the question how many different values a single module may
have, as this affects the data encoding density of the barcode. For a general
use barcode, black and white make it more easy to take into account varying
lighting conditions and enables the usage of image binarization methods in
detection. As we do not need to take such conditions into account, in the ideal
case we could just use all the different values that image channels provide to
encode data. On the other hand, this means that module values would have
no tolerance for small value changes. We can expect those small deviations, as
color space conversion (section 2.4.1), and transform coding and quantization
(section 2.4.3) both change the colors in such a way that the actual image
sample value can only be known to a certain precision.

In a typical video communication system we are dealing with 3-channel
8-bit R′G′B′ images that get converted to Y′CBCR color space when we create
video out of them. In this case Y′CBCR color space has 220 values for luma
channel and 225 values for both chroma channels[34, 35]. Then transform
coefficient quantization (appendix A) will change the color value even further,
especially when the module size gets smaller. Therefore, if we want to ensure
that the module value can be reliably read even with higher compression
ratios, we should use black and white modules. This enables encoding 1 bit
data per module and thus leads to simpler detector design.

By using binary valued barcode modules we mainly are concentrating
on the luma channel. But what if we would also use the color information
encoding chroma channels for data? From section 2.4.1 we can see that
a wrong color space conversion results in slightly wrong color values. Let
us see what happens when all color channels have an equal value, namely
R′ = G′ = B′ = a, where R′ is the value of the red color channel, G′ is the
value of green color channel and B′ is the value of the blue color channel.
Both ITU-R BT.601[34] and ITU-R BT.709[35] specify the value of the luma
channel Y ′ and chroma channels C ′R and C ′B with following equations:

44 CHAPTER 4. IMPLEMENTATION

Y ′ = kRR
′ + kGG

′ + kBB
′, C ′R = R′ − Y ′, C ′B = B′ − Y ′

ITU-R BT.601: k601R = 0.299, k601G = 0.587, k601B = 0.114

ITU-R BT.709: k709R = 0.2126, k709G = 0.7152, k709B = 0.0722

where kR + kG + kB = 1. Therefore, the two major standards differ only
in multipliers used for converting color channels into the luma channel.
For grayscale source image, where every channel has the same value, Y ′ =
kBa+ kGa+ kBa = a, C ′R = a− a = 0, and C ′B = a− a = 0. This means that
the luma channel directly corresponds to the grayscale value of the image pixel
independent of the used color space conversion method. And consequently,
chroma channels will be easily compressible over the barcode area, as they
only have the same constant value of 0.

Section 2.4.2 describes the chroma subsampling and how the color infor-
mation is not as important as the details for the human vision. Consequently,
the standard JPEG quantization matrix for chroma channels (table A.1) has
higher quantization factors than the corresponding example matrix for the
luma channel. So if chroma channels are used to encode information, the
information density of those channels will be smaller than for the luma channel.
Also, if we do not have access to the original luma and chroma channels, and
our color space conversion assumption is wrong, this may also result in a
slightly wrong value for all color channels in the R′G′B′ color space.

Even though using more than 2 color values per module, or using chroma
channels, could provide us with higher information encoding density in the
ideal situation, distortions resulting from the video encoding and decoding
process make purely black and white modules less ambiguous.

4.1.2 Finder pattern

Finder pattern has the role to make it easier to find out barcode location
and orientation. The bigger and the more unique finder pattern is, the more
easy it is to search for. Consequently a bigger finder pattern takes up area
that could otherwise be used to encode data. Also, the location of the finder
pattern relative to the rest of the barcode area matters. If the barcode is
partially damaged, then it would be desirable that the finder pattern is still
recognizable after encountering damage.

Some of the existing finder pattern shapes and their properties are de-
scribed in section 3.2.4. The interesting properties for a finder pattern are:
distinctiveness, immunity to rotation, and standing out from the background.
When we want to use the barcode in video communication applications we

4.1. BARCODE DESIGN 45

(a) 7× 7, 32 bits (b) 8× 8, 46 bits (c) 9× 9, 60 bits

Figure 4.5: Finder pattern and barcode size alternatives. Red outline modules
are meant to be used for finder pattern detection and blue outline modules
prevent additional crossing finder pattern detection structures from forming
near the center.

can ignore the rotational independence property, as video image is not usually
rotated. This way we can get more usable area for the actual data.

The usual image distortions in video communication applications, namely
scaling, cropping, and occlusion, are described in section 2.3. The most
important information, like the face of the participant, is usually found at
the center of the video frame. This way we can expect cropping to destroy
information on sides of the video frame and we can also expect the smaller
occluding pictures are to be placed at the sides of the main picture. This leads
to a finder pattern design where the finder pattern lies in the middle of the
barcode area.

By taking ideas from the finder pattern structure of the QR code[73], prop-
erties of Reed-Solomon error correction code[86], and some experimentation,
the finder pattern structure is a pattern visible in figure 4.5(c). This results in
a finder pattern whose center can be detected by searching in the horizontal
and vertical direction. The finder pattern also does not need an additional
quiet zone around the barcode, as it can be separated from the rest of the
barcode and has enough unique parts that can be detected by themselves.
Figure 4.6 shows the possible divisions of the axis-oriented finder pattern
component that gives a known ratio of black and white modules that may be
used to detect partial finder patterns. Partial finder patterns, however, may
result in spurious finder pattern detections that are discussed in more detail
in section 4.3.7.

Figures 4.5(a) and 4.5(b) show some alternative smaller barcode and finder
pattern designs. Using a smaller barcode size would provide more robustness

46 CHAPTER 4. IMPLEMENTATION

Figure 4.6: Unique divisions that include the center of the finder pattern
based only on the edge ratio information.

against scaling, as the barcode area would take less space with the same
module size. Consequently, a smaller barcode would allow modules to be larger
over the same image area and therefore easier to distinguish. On the other
hand, the finder pattern takes relatively more space over the barcode area
and this way leads to fewer modules that can be used for error resilience. Also
there are fewer alternatives to divide the finder pattern into unique shapes.
This makes it harder to enable the detector to detect partially damaged
finder patterns. The symmetry of the finder pattern location also plays a role
when we try to make the relative damage that the barcode area encounters
independent of the damage direction.

4.1.3 Barcode area and codeword placement

Multiple modules are grouped into codewords that form the basic addressable
element of the barcode. This enables block based error correction that is used
for damage resistance[73–77]. Codeword locations, conversion of the raw data
into codewords, division between data and error correction codewords, and
the order in which codewords are encoded depends on the use cases that the
barcode standard tries to take into account.

The codeword based data encoding approach is somewhat sensitive to
damage, as damage to one module makes the whole codeword damaged.
Therefore we want to minimize the codeword size so that the damage to
one module only covers as small area as possible. We can expect that the
damage comes from cropping and overlaid elements. Cropping destroys large
horizontal and vertical edge areas, whereas overlaid elements focus their
damage over small areas. Figure 4.7 shows some possible codeword placement
strategies around the barcode area depending on the damage that the barcode
is expected to encounter. We can use the layout shown in figure 4.7(a) if we
expect to encounter damage from cropping, but do not know from which
direction the image is cropped. Figure 4.7(b) shows a situation where we can
increase the horizontal cropping resistance with the risk of losing almost all
codewords if sides of the barcode are cropped away.

4.2. EXISTING DETECTORS 47

(a) (b) (c)

Figure 4.7: Alternative codeword placement strategies. (a) 4-bit code words
with somewhat equal horizontal and vertical cropping resistance. (b) 4-bit
codewords with higher horizontal cropping resistance. (c) Mixed 3-bit and
4-bit codewords for blob damage resistance.

These cropping resistant codeword placements, however, can lead to a large
amount of codeword damage if the area of damage covers many codeword
boundaries. Figure 4.7(c) shows a codeword encoding strategy that is often
employed in general use barcodes where the damage to the barcode area
is assumed to consist of horizontally and vertically roughly equally sized
blobs. This can be a useful codeword placement strategy if picture-in-picture
functionality (section 2.3) is used as part of the video output.

4.2 Existing detectors

Most barcode readers are part of commercial applications and therefore the
exact algorithms that they use are trade secrets. However we can look at a
few open source implementations and research on barcode detection to get
some clues how existing barcode readers generally work.

Barcode detection can generally be divided to five distinct steps: pre-
processing, feature extraction, regions of interest and code area location, code
segmentation, and decoding. Pre-processing the barcode image converts the
image data to a format that makes it possible to apply feature extraction.
Feature extraction step provides the barcode detector the features that it can
use to locate candidate barcode areas. Then the barcode area candidates are
searched for by using the extracted features. When a barcode area is located,
comes the step of locating different barcode regions, like the data encoding
modules and their values. And finally, when the different module values are
known, they need to be read in the order that the barcode symbology specifies,

48 CHAPTER 4. IMPLEMENTATION

apply the possible error correction, and decode the data keywords that result
from this.

Different pre-processing methods have the goal of making the original image
more favorable for the feature extraction phase. Often barcode processing with
black and white modules relies on grayscale image conversion, and possibly
thresholding, of the original color image[79, 87–91]. Thresholding can be
either global or locally adaptive, depending on if we take possibly varying
image brightness into account[78, 87, 88]. This then results in only one image
channel that can be used for feature extraction or additional pre-processing.
More expensive pre-processing steps may include applying different filtering
operations, like morphological operations[92, 93] or noise reduction[79, 93],
and blur detection and correction. Blurring can come either from shaking or
out-of-focus images[91, 94]. To reduce the computational complexity of the
pre-processing, these steps may also be applied later in detection process if
the potential barcode area can first be located by some other method[92].

The feature extraction phase provides the barcode detector features that
it can use for the barcode area location. Features related to specific barcode
component shapes include edges[87], line segments and their crossings[87],
corners[95], and features arising from various Hough transforms[78, 89, 94].
Texture direction analysis[87, 89, 96] can be used for barcode area location that
then enables the detection of multiple barcode type candidates without having
to search for barcode specific features over the whole image. These features
can then form larger feature groups that provide even stronger indicators of
the barcode area, like the three similar finder patterns in the QR code[91].

The extracted features are then selected based on some criteria to detect
valid barcode areas and achieve low false positive count while doing this.
Depending on the selected features, this selection is done by having a measure
for feature goodness and selecting features that have the largest threshold
crossing value for such measure[87]. This measure may come directly from
feature values or be combined by some function. These combining functions
can be, for example, decision functions in machine learning methods[96].

The barcode area, its size, and orientation can be determined when patterns
that make the barcode area are located. These patterns are found out by
searching for known functional areas of the barcode[79, 88, 90], or by relying on
the quiet area around the barcode, defining the edges of the barcode accurately
enough[79, 87]. The detected barcode area often suffers from perspective
projection distortion due to camera angle. This can be corrected by using
inverse perspective transform that relies on the barcode area curvature being
close to a plane[79, 88]. The barcode may also suffer from uneven surface that
can result, for example, from bending due to being on a cylindrical surface,

4.3. DETECTOR DESIGN 49

or due to wrinkles on the surface. The uneven surface can be overcome, for
example, by fitting a deformable model on the estimated barcode area[94].

When the barcode area is determined and its distortions are taken into
account, we can read individual module values that result in the final barcode
value. There unfortunately is little information about reading the module value
in the literature. Some focus is, however, given for determining the module
position[78, 97]. By examining some freely available 2D barcode decoder
libraries we can see that ZBar[98] uses the value of the thresholded pixel at
the estimated module center as the module value. Libqrdecode[99], on the
other hand, takes the average value of the thresholded pixel values over the
estimated module area and checks if the resulting average is closer to 0 or 1.

4.3 Detector design

Detector design aims to take into consideration the finder pattern structure,
known image distortions, and the situations that can cause spurious barcode
area detections. Algorithm 1 shows the general steps that the detector performs.
These steps are explained in more detail in following subsections. We can also
take a look at the assumptions that this barcode detector does about the
barcode distortion model and how it takes it into account.

1. Detect strong horizontal and vertical edges. (4.3.2)
2. Detect the finder pattern based on the detected edge information.

(4.3.3)
3. Merge horizontal and vertical pattern detections. (4.3.4)
4. Find pattern group intersections. (4.3.5)
5. Create estimated barcode areas based on pattern group intersections.

(4.3.6)
6. Clean up likely invalid barcode matches. (4.3.7)

(a) Small intersection score.
(b) Narrow area.
(c) Overlapping barcode areas.
(d) Invalid finder pattern.

7. Read barcode module values. (4.3.8)

Algorithm 1: General steps for barcode detection with this detector and
the sections where they are described.

We do not need many of the advanced and often computationally expensive
methods that are used in many barcode detectors to overcome the features of

50 CHAPTER 4. IMPLEMENTATION

the environment. We also want to keep this detector fast so that it is possible
to analyze the video image in real-time. This is about 20–30 frames per second,
including the time it takes to decode the video. The smaller the barcode size
we can detect is, the smaller video image size we can use in testing and this
way either execute tests faster, or possibly run more tests simultaneously.

Distortions that our detector does not have to take into account are random
noise, lens related distortions, blurring, uneven lighting, and rotation. We
mostly need to take into account the large scale differences that occur with
output streams including many participants. We may also be interested in
how the video encoder distorts the image, but this is mostly for finding out
the limits of the detector.

4.3.1 Distortion model

The theoretical barcode model has a certain module size and clear edges
between modules. When this barcode is shown as an image, we only have
single samples of the barcode in the image. Additionally, image size changes
lead to resampling the image by either reducing or increasing the resolution
of the source image. However, we know that our barcode can only have two
different module values. This way we can create a model that enables us to do
sub-pixel accurate barcode positioning. This leads to a more accurate module
value reading when the module size is small.

When creating the initial image from the barcode model or reducing
the image resolution, the image distortion model that we assume is an
image averaging operation. The resulting target image value F down

x,y is created
by taking the mean of the area in the source image that is closest to the
corresponding source image point (x′, y′):

F down
x,y =

1

ab

∫ x′+a/2

x′−a/2

∫ y′+b/2

y′−b/2
f̂x̂,ŷ dx̂ dŷ.

Here a is the width, b is the height of the sample pixel area in the source
image, and f̂x̂,ŷ is the value of the sample point in the source image. Sample
point value determination varies depending on if we are reading from the
barcode model or if we are resizing the image. When sampling the barcode
model, f̂x̂,ŷ is the binary module value at sample point (x̂, ŷ). When we are
downsampling an existing image we assume that coordinates that are not
at an exact existing image sample point value f̂x̂,ŷ will have the value of the
nearest known sample point.

We assume that the image resolution increase is done by using bilinear
interpolation[23]. In bilinear interpolation the interpolated sample value is

4.3. DETECTOR DESIGN 51

(a) (b) (c)

Figure 4.8: (a) Image sample points (gray crosses) and a new sample point
(black cross) with its location compared to original image samples. (b) New
sample locations when scaling the image by four and a nearest-neighbor repre-
sentation of the black-white edge. (c) The final nearest-neighbor representation
of the linearly interpolated image.

calculated by taking the weighed value of the 4 nearest image sample points.
We can see how this works by assuming that the 4 nearest sample values reside
in coordinates (0, 0), (1, 0), (0, 1), and (1, 1). Then the bilinearly interpolated
value F up

x̂,ŷ at (x̂, ŷ) where x̂, ŷ ∈ [0, 1] comes from following equation:

F up
x̂,ŷ = (1− x̂)(1− ŷ)f̂0,0 + x̂(1− ŷ)f̂1,0 + (1− x̂)ŷf̂0,1 + x̂ŷf̂1,1.

We can see that x̂ and ŷ work as weights that depend on the horizontal
and vertical distance from the nearest known original image sample points.

As our detector is based on detecting the image edges, we can examine
how bilinear interpolation acts near edges. Figure 4.8 shows what happens
when sample points that form a vertical edge are interpolated with 4-time
resolution increase. This creates a staircase edge between the areas and is
perceived as a blur. We can also see that when f̂0,0 = f̂0,1 and f̂1,0 = f̂1,1,
the interpolated values tell the relative position between the original sample
points that form the edge, as:

F̂ up
x̂,ŷ = f̂0,0(1− x̂) + f̂1,0x̂.

This works similarly for horizontal edges. We can see that if we are just
concerned with horizontal or vertical edges between modules, we can get
the interpolated sample point position relative to the original sample points
forming the edge just by looking at its value.

52 CHAPTER 4. IMPLEMENTATION

Known samples
Nearest value
Interpolated value
Saturated value

(a)

1

0

(b)

1

0

(c)

0

1

(d)

0.11

−0.11

(e)

0.12

−0.12

(f)

Figure 4.9: One-dimensional interpolation results for often used image inter-
polation filters on a discretely sampled step edge. Saturated values indicate
the maximum and minimum values that an interpolated value can get in the
final image. Interpolation results for (b) cubic interpolation, (c) Lanczos3
interpolation, and (d) linear interpolation. The difference between linear
interpolation, (e) cubic interpolation, (f) and Lanczos3 interpolation.

Bilinear interpolation is not the only method available for image resizing.
We can do a quick estimate for its applicability by looking how much it differs
from other often used image interpolation methods. The interpolation situation
that we are interested in is a step edge that goes from the maximum to the
minimum value, or the other way around. Figure 4.9 shows how values from
different often used interpolation methods compare when the interpolation is
applied in one dimension. We can see that the cubic[23] and Lanczos3[100]
interpolation methods result in high bumps at the sample edges. These result
in ringing artifacts in grayscale images. In our case these artifacts will be cut
away due to value range saturation in the image. Figures 4.9(e) and 4.9(f)
show the resulting difference between linear interpolation, and cubic and
Lanczos3 interpolation methods. As the difference for saturated values is
around 4% at most, we can be quite sure that at least these methods will not
cause a large error in comparison to our assumption that the image is resized
by using bilinear interpolation.

4.3.2 Edge detection

The change between black and white modules forms a step edge. This step
edge has a property of going from the maximum image intensity value to the

4.3. DETECTOR DESIGN 53

minimum, and the other way around. We use this assumption to form the
basic features that this detector uses for the finder pattern detection.

We can first look at how edge detection is generally done. Edge detection
is often divided into three parts: image smoothing, image differentiation, and
edge labeling[101]. Image smoothing removes noise from the image that results
in spurious edge detections. Image differentiation brings out features that
produce edges. Labeling involves edge localization and false edge suppression.
In our case we are looking just for purely horizontal or vertical step edges.
This makes it possible to ignore directional features of two-dimensional edge
detectors. We can also ignore the smoothing step, as the goal of smoothing is
to reduce noise, but at the same time it eliminates small features that look
like noise. This is detrimental when we have a small module size that we want
to detect in the barcode. We can also rely on large edge intensity changes,
as black and white module values go from the image minimum value to the
maximum, and the other way around.

As this barcode detector is designed for testing a video communication
system, we can ignore barcode rotation. This way we can use one-dimensional
differentiation on rows and columns to search for edge matches from axis-
oriented sample sequences. This results in rows and columns that are inde-
pendent sample sequences on which we can apply the edge detector without
worrying about the detection direction. We can define an edge ek to be a
monotonically increasing or decreasing sequence of samples yk where ykn < ykn−1
or ykn > ykn−1. We can do this by assuming that edge smoothing resulting
from image upscaling described in the previous section will not result in two
subsequent samples having the same value. This is likely the case, as we
usually have an 8-bit image channel that has most of the intensity values
available and image resizing will result at most in 10–20 times resolution
increase.

The monotonically increasing sample sequence forms a staircase edge.
We are, however, expecting a step edge, and therefore need to determine its
location from the staircase edge. We can use finite difference ∆k

n = ykn − ykn−1
between samples to calculate the location of the step edge. First, we add virtual
samples to the end and to the beginning of the monotonically rising or falling
sample sequence to make sure that the staircase edge reaches the minimum
and the maximum image values. Then these finite differences are normalized
so that they form weights wk

n = (∆k
n)/(

∑
j ∆k

j) such that
∑

j w
k
j = 1. These

weights are used to calculate the step edge location C(ek):

C(ek) =

q+1∑
j=p−1

wk
j (skj−1 +

skj − skj−1
2

),

54 CHAPTER 4. IMPLEMENTATION

where skj is the location of sample value ykj . p is the location of the first finite
difference ∆k

p of edge samples and q is the location of the last one and p ≤ q.
This calculates the mass center of finite differences.

In addition to calculating the location of an edge, edge intensity I(ek)
provides us information about the edge direction (rising or falling) and about
the intensity of the edge. The edge intensity can be used for false edge
suppression, as we know that the edges that interest us theoretically go from
the maximum to minimum value and the other way around. Edge intensity
value is calculated simply by calculating the sum of finite differences, or
equivalently the difference between the first and the last samples that belong
to the staircase edge:

I(ek) =

q∑
j=p

∆k
j = yq − yp−1.

4.3.3 Finder pattern detection

When we have the information about edges, we can start using it for the
finder pattern detection. We can use the intensity of an edge I(ek) and the
estimated step edge location C(ek) to find out where the finder pattern, or a
part of it, is located. This is done by searching for edge location sequences
with specific ratios in edge location differences. We know that edge intensities
change from the minimum to the maximum value, or close to it. This makes
it possible to ignore false edges that are created by compression noise or by
areas that do not belong to the barcode. This enables us to focus on probable
barcode module edges. At the same time we want to be able to recognize
small barcode finder patterns where edge intensities do not always go from
the minimum to the maximum value and therefore we want to have some
slack in edge intensities that we accept. This leads to accepting only the edges
that have the absolute edge intensity |I(ek)| at least as high as the minimum
edge intensity threshold τI .

The general process for finding out if edges that we have in the current
sample sequence form a pattern match is outlined in algorithm 2. This
algorithm goes through partial finder patterns listed in figure 4.6 and checks
which sequences of strong edge intensities match with the current partial
finder pattern under inspection. The strong edge list in the sample sequence
is iterated in the rising order of edge locations. This filters out all edges
whose absolute intensity does not reach the edge intensity threshold τI . This
threshold is to make sure that we do not falsely register edges that come
from compression artifacts and to ensure that small variations in the image

4.3. DETECTOR DESIGN 55

l← the amount of consecutive finder pattern edge differences;
forall the edges ek in a sample sequence, where |I(ek)| ≥ τI do

Check that the last l edge intensity directions match with pattern’s
directions;
Check that the relative ratio of the last l edge location differences
matches with the pattern up to error εM ;
if all checks succeed then

Create a match object;
end

end
Algorithm 2: General steps for pattern matching based on the location of
strong step edges ek for a pattern with l + 1 alternating black and white
module groups.

intensity do not form interesting edge matches. Then when we have enough
strong edges at our disposal, we can start comparing them with the current
partial finder pattern under inspection. Table 4.1 shows partial finder patterns
and their ratios that we use in our detector to establish a potential finder
pattern match. As they mostly are partial finder pattern matches, they also
enable the detection of partially damaged finder patterns. We can create
normalized edge difference lists from these patterns by dividing each module
color ratio by the sum of these ratios.

The first comparison using the partial finder pattern under inspection is
to check if all edge intensity directions match. The strong edge matches in
the image may quite possibly have two consecutive edges going to the same
direction even though a pattern consists of black and white modules. This
may arise when image intensity changes slowly from one extreme to another
and has multiple consecutive weak edges between two strong edges.

Table 4.1: A list of partial finder patterns and their corresponding scores that
are searched from the image to establish a potential barcode match.

Pattern Module color ratios Score Description

1:1:3:1:1 4 Full pattern
1:1:3 1 Partial left/top pattern

1:3:1 1 Partial center pattern
3:1:1 1 Partial right/bottom pattern

56 CHAPTER 4. IMPLEMENTATION

When edge directions under inspection match with the ones that the
partial finder pattern has, we can continue by checking that each normalized
edge location difference ∆edges matches closely enough to the corresponding
normalized ratio ∆pattern in the current partial finder pattern under inspection.
Edge location difference is the difference between the location of two consecutive
strong edges. We then normalize these differences by summing up the last
l edge center differences and dividing each edge difference with this sum.
Here l is the edge difference count for the current partial finder pattern
candidate under inspection. This is not the only way that could be used to
make ratios of the last l edge differences and partial finder pattern module
color ratios comparable. We could, for example, normalize against the widest
edge difference and this way get larger normalized edge location differences
out when the finder pattern module is partially cropped or occluded.

The closeness of the normalized edge location differences is determined by
checking if all normalized edge differences ∆edges

i are relatively close enough
to the corresponding normalized ratios ∆pattern

i for the current pattern under
inspection. Relative closeness is calculated by:

|∆edges
i −∆pattern

i |
∆pattern

i

≤ εM ,

where pattern match error limit εM is a constant for selecting how big pattern
match errors are allowed. If all edge location differences pass this test, then
current edge differences are used to generate a line segment that corresponds
to the current partial finder pattern.

The line segment resulting from the current partial finder pattern match
is perpendicular to the current sample sequence that is used for pattern
match generation. Sample sequences generated from rows result in vertical line
segments and sample sequences generated from columns result in horizontal
line segments. This line segment of the partial finder pattern match indicates
the assumed center of the finder pattern. The location and length of an
individual match line segment is determined by the location of the sample
sequence and the difference between the first and the last edges that are
included in this partial finder pattern match. The center location of the actual
finder pattern depends on which partial finder pattern we are currently trying
to search for, but is still calculated by using the outermost edge locations of
the current partial finder pattern match.

The resulting partial finder pattern match line segment is generated by
using the module size estimate of the current matched partial finder pattern.
The module size is estimated to be the difference of the first and the last edge
location divided by the amount of edges in the current partial finder pattern

4.3. DETECTOR DESIGN 57

match. The module size estimate then determines the match line segment
length simply by multiplying the average module size with the module width
factor δmodule, that in our case usually is 1.

The location of the line segment resulting from the partial finder pattern
match is determined in such a way that it indicates the center of the full finder
pattern. In the ideal case this results in multiple line segments that are on
top of each other. Also, as each sample sequence results in an individual line
segment, the amount of these line segments in the ideal case corresponds to
the module size in pixels multiplied by the amount of partial finder patterns.
The next section describes how these line segments resulting from partial
finder pattern matches are then combined together.

The lengths of these line segments give an estimate for the module size.
This, however, is wrong in a sense that matches result in line segments
perpendicular to the current sequence direction. If we have modules with
aspect ratio that is not equal in the vertical and the horizontal direction, the
line segments that are supposed to intersect with each other will not have
emphasis in the correct direction. This can lead to a situation, especially with
small module sizes, where we detect the partial finder patterns correctly, but
line segments resulting from them will not intersect. We can overcome this
by increasing the module width factor δmodule. This can, however, lead to
false finder pattern detections more easily. Another way to overcome this
is to figure out the aspect ratio of modules in the barcode and weight the
horizontal and vertical line segment lengths differently.

4.3.4 Match merging

The pattern detection phase results in a large amount of line segments that
indicate where the detected finder pattern center is. Most of these resulting
line segments form larger clusters that come from detecting the same finder
pattern multiple times. If we then use each segment intersection to form a
potential barcode match, we will have O(mn) potential barcode matches for
modules that are n pixels high and m pixels wide. In the ideal case every
match on the same pattern results in an intersection at the same point, so in
this case we would have mn barcode candidates from segment intersections.

We can reduce the resulting intersection count by merging the vertical and
horizontal match segments lmatch

i separately and create new segments lmerged
j

that maintain the approximate location and extent of the finder pattern match.
Let us see how this works by looking at vertical line segments. Horizontal
segments have the same operations but just with flipped coordinates.

First, assign some slack εpatterni to each match segment lmatch
i in the

horizontal direction, when the horizontal segment location is at xsegment
i .

58 CHAPTER 4. IMPLEMENTATION

Segment area Asegment
i is a rectangle that includes all points that are between

the vertical endpoints of the line segment and horizontally εpatterni away from
the horizontal location xsegment

i of the segment.

When we have formed areas Amerged
i = Asegment

i from all vertical segments,
then we go through all intersecting areas Amerged

j ∩ Amerged
i 6= ∅ and remove

the intersecting areas Amerged
i and Amerged

j and create a new rectangular area

Amerged
k where the horizontal start and end coordinates of that area are the

maximum and the minimum of horizontal coordinates of areas Amerged
i and

Amerged
j , and vertical coordinates are similarly the maximum and the minimum

of Amerged
i and Amerged

j . And then we repeat this process until we have no
overlapping areas left. And repeat the same process with horizontal segments.

As a result, each area Amerged
i covers a group of vertical segments. We can

then create a new segment lmerged
i that has the same vertical endpoints as

area Amerged
i and the horizontal location is the median of all vertical segments

inside the area. This median selection criteria is used to avoid the effect of
outliers on the merged segment location. However, merged segment endpoints
are still sensitive to outliers.

This merging process avoids the quadratic complexity that we would
encounter if we would use the match segments as they are to create barcode
area candidates. We can see that this line segment merging operation has
O(n log n) complexity, as that is the complexity for rectangular area overlap
detection, where most of the complexity comes from sorting[102, 103]. By
using balanced binary trees as the data structure can handle insertion and
deletion with complexity of O(log n). Therefore the removal and creation of
new areas is cheap from the complexity standpoint. Although all areas could
overlap with each other, the removal of one area on each merging iteration
leads to at most n− 1 overlap removals in total.

We still have not discussed how the match segment slack εpatterni is deter-
mined, even though it determines the resulting area size. Slack is determined
by multiplying the pattern match error limit εM with the estimated module
size. The minimum value for slack is 0.5. This is to ensure that we will get
some decent sized rectangular areas Asegment

i even when the module size is
small (around 2 pixels).

This approach of pattern match line segment merging has its shortcomings
as one standalone segment resulting from spurious pattern detections on
module edges can merge two strong separate segment groups together. This is
because the slack εpatterni is relative only to the module size and this way may
cover too large an area relative to the actual error when the module size is
large. Then, by using median to select one single point to indicate the location
of merged segments will return value that is bad at least for one group.

4.3. DETECTOR DESIGN 59

(a)

∆xstart = horizontal(imerged
hv)− startx(lmerged

h)

∆xend = endx(lmerged
h)− horizontal(imerged

hv)

∆ystart = vertical(imerged
hv)− starty(l

merged
v)

∆yend = endy(l
merged
v)− vertical(imerged

hv)
ρx = min(∆xstart,∆xend)/max(∆xstart,∆xend)
ρy = min(∆ystart,∆yend)/max(∆ystart,∆yend)
badnesshv = (min(ρx, ρy) + λ)−1

(b)

Figure 4.10: (a) An intersection with high badness (left) and low badness
(right). (b) Intersection badness calculation.

4.3.5 Merged segment intersection

After we have reduced the amount of intersecting horizontal and vertical
segments, we want to find out where the barcode center is. We do this by
finding out the intersection point of a merged horizontal segment lmerged

h

and a vertical segment lmerged
v . The intersection of line segments can be

determined, for example, in similar fashion as rectangle intersection[103]. For n
line segments finding out the all intersections can be done with the complexity
of O(n log n+ k), where k is the total number of intersections.

An intersecting horizontal segment lmerged
h and vertical segment lmerged

v

will form an intersection imerged
hv . The intersection also has a badness measure

badnesshv that tells how much the intersection point of the two intersecting
merged segments differs from the ideal center point. The reason for intersection
badness can be seen from figure 4.10(a) where the upper row results in an
unwanted segment intersection. As these intersection points result in potential
overlapping barcode matches, we can later use this intersection badness
measure to clean up barcode areas that look like they result from accidental
line segment intersections. The badness measure badnesshv is calculated with
an algorithm presented in figure 4.10(b). Here horizontal() and vertical()
functions refer to the horizontal and vertical locations of the intersection.
Functions start() and end() refer to the start and end points of the line
segment they are applied to. λ is some small constant to prevent the badness
measure going to infinity.

Intersection has certain properties in addition to the badness measure. It
has a list of horizontal and vertical segments where each segment corresponds
to a partial horizontal or vertical finder pattern match. Table 4.1 assigns a
score to each partial finder pattern and we can use these scores to assign a

60 CHAPTER 4. IMPLEMENTATION

score to the intersection. The intersection score is the sum of scores of unique
partial finder pattern match segments from which the intersection results from.
We are interested in the unique partial finder patterns in the intersection, as
the amount of segments that form the intersection only tells us how large the
module size is.

4.3.6 Barcode area candidates

After we have horizontal and vertical line segment group intersections, we
can use this information to refine our estimate of the potential barcode area
center. We can also use this combined information to refine the estimated
module size and this way potentially get a better barcode area estimate.

The intersection location is first adjusted so that only the horizontal
and vertical partial finder pattern segments that include the intersection
point between their endpoints are selected for the final intersection point.
This adjusted intersection location is calculated by taking the median of
horizontal coordinates of vertical segments and similarly with the vertical
coordinate. Even though we still could iteratively adjust this location, it would
be unnecessary, as the biggest change to the intersection location comes from
the elimination of segments resulting from pattern detections that are far
away from the unadjusted intersection location.

Next we estimate the barcode area by using module size estimates of
the partial finder pattern matches that are included in this barcode area
intersection. We assume that the module size remains constant over the
barcode area. We can do this for synthetic images, as we do not have to worry
about sporadic sampling rate changes or distorted barcode surfaces.

The actual module size is then separately determined for both axes, by
taking the median of module widths of all partial finder pattern matches for
the current intersection. As we are mostly including partial finder pattern
matches, the module size estimate comes from partial finder patterns near
the center. This makes the module size estimate for a cropped and damaged
barcodes more robust. Modules near the edges are often smaller than modules
in the middle, especially in a cropped image.

The assumption of constant-sized modules is violated when the module
size is small and a nearest neighbor type image filter is used for resolution
reduction. If this filter does not have anti-aliasing properties built in, then it
is quite likely that the module size estimate coming from center modules will
result in an overly small estimate. This will lead to incorrect positioning of
modules that are far away from the barcode center. We could use the mean
width of module size estimates and this way nudge the module size estimate

4.3. DETECTOR DESIGN 61

into the correct direction. This would, on the other hand, result in a smaller
module size estimate for cropped images.

One solution to the incorrect module size and position estimates would
be to relax the assumption of the constant module size for smaller sizes. It
would be then possible to search for horizontal and vertical edge clusters over
the estimated module border locations and use this information to refine the
module location information. This, however, would need some measurement
for the goodness of fit, a regularization method to prevent everything from
collapsing to a single point, and an optimization method to achieve this.

4.3.7 Candidate area elimination

Barcode area candidates can be created by any matches that result in ap-
propriately spaced edge sequences, especially as we are also searching for
partial finder patterns. These edge sequences may also arise from user interface
graphics or other content on the screen and from high frequency areas in
natural images. Also, module values on the barcode area itself include potential
for partial finder pattern sequence formation. We could eliminate these module
groups that form partial finder patterns by approaches described in the finder
pattern design section 4.1.2. However, these methods take away barcode area
that could otherwise be used for encoding data. We can instead use other
means to ensure that those areas will not easily result in spurious barcode
matches.

There are four elimination phases that we use to clean up the potentially
invalid barcode matches from the image. In the first phase we use the
intersection score, described in the section 4.3.5. In this elimination phase
we ignore all intersections that have score less than 4. This corresponds to a
case where at most four module rows, or columns, are fully destroyed with
maximum of two rows or columns on one side.

The second elimination phase is for spurious pattern detections, usually for
areas that occur in natural scenes. Often the detected pattern match results in
an overly narrow barcode area that can not occur in images that are stretched
in any realistic way. Barcode narrowness can be determined from the aspect
ratio of the barcode area:

aspect(Acandidate) =
width(Acandidate)

height(Acandidate)

narrowness(Acandidate) = max(aspect(Acandidate), aspect(Acandidate)−1).

To accept the candidate barcode area as a valid one, we require that the
narrowness measure is less than some predefined narrowness limit constant

62 CHAPTER 4. IMPLEMENTATION

narrowness(Acandidate) < εN . This constant can be determined by application
basis, for example by determining that a 11:9 CIF type image will be stretched
to fit a 16:9 screen with some extra slack for error.

In the third elimination phase we filter out barcode area candidates that
result from the barcode data area by module arrangements that form a full or
partial finder pattern sequence. Figure 4.11(a) illustrates the places where such
module groups that look like the finder pattern may form. The finder pattern
shape, however, prevents the full finder pattern sequence from forming in other
locations than the center of the barcode area. This information can be used
to eliminate barcode area candidates that result from partial pattern matches
inside the barcode area. To find out if two candidate barcode areas, Acandidate

i

and Acandidate
j , are from the same barcode, we first check the overlapping area,

Aoverlap
ij = Acandidate

i ∩ Acandidate
j . Two different barcode area candidates are

considered to be overlapping if the relative amount of overlap for both barcode
area candidates is over some overlapping threshold τ overlap:

|Aoverlap
ij |

|Acandidate
i |

≥ τ overlap and
|Aoverlap

ij |
|Acandidate

j |
≥ τ overlap.

(a) (b)

123
(c)

Figure 4.11: (a) Locations where module groups that look like a partial
finder pattern may form fully inside the barcode area are marked with big red
crosses. Locations where finder pattern like structures may form are marked
with small blue crosses if there are appropriate patterns near the barcode
area. (b) An example barcode where a partial finder pattern match (red) is
detected in addition to the full finder pattern (blue). (c) Smallest overlap
scenario for pattern matches (blue grid) resulting from the same barcode.

4.3. DETECTOR DESIGN 63

9/9 correct modules required

≥ 3/4 correct modules required

≥ 4/8 correct modules required

Figure 4.12: The division of the finder pattern to different categories and the
minimum required modules for each category.

This prevents us from eliminating cases where a small barcode occludes
a larger barcode. Overlapping threshold τ overlap = (4/9)2 is selected so that
we can notice if two equally sized barcode areas overlap at least with 4× 4
module area. This can be derived from figure 4.11(c) where we have two
overlapping barcode areas, where the second one is generated by the help of
objects outside the actual barcode area.

When a barcode area overlap is detected, we try to find out if this is due to
a partial pattern match. This can be detected by comparing intersection scores
against each other and the area candidate with the smaller score is removed.
If intersection scores are equal, we can look at the intersection badness to
decide which intersection to remove. The intersection with the larger badness
score gets removed. We keep both barcode area candidates if badness scores
are equal.

The last elimination phase involves reading the actual module values of
the finder pattern and checking its integrity. This ensures that we probably
have the actual finder pattern. Figure 4.12 shows how different finder pattern
modules are divided to three different categories. From each category we check
that it has at least the minimum amount of correct modules. This category
assignment tries to achieve a situation where we allow sides to be occluded or
cut out, but expect the center area of the picture to remain intact.

We have more elimination steps that would be strictly necessary, as we
could eliminate most barcode area candidates by checking for the finder
pattern integrity. On the other hand we treat module value reading as an
expensive operation and want to avoid it. These checks are also ordered in

64 CHAPTER 4. IMPLEMENTATION

such a way that cheaper checks are executed first and the more expensive
ones have less candidate barcode areas to go through.

4.3.8 Value reading

When the barcode location has been determined, then the next part is to read
the barcode value. This is done by reading individual module values in some
specific order and then determining the actual value of the barcode based on
these module values. The value of a single module is determined by reading
the mean value µ(Amodule

xy) of the image over the module area:

µ(Amodule
xy) =

1

hw

∫ y+h/2

y−h/2

∫ x+w/2

x−w/2

f(x̂, ŷ) dx̂ dŷ,

where x is the horizontal center, y is the vertical center, h is the height
and w is the width of the module, and f(x̂, ŷ) is the intensity of the image
pixel that is closest to the point (x, y). This enables us to read the module
mean by weighting the edge and corner pixels by the area they cover and
reading the pixel values that are fully inside the module area as they are.

The module value is then determined by what the module mean is. The
allowed module values are white, black, or unknown. Unknown value results
when the mean value over the module area is exactly at the image intensity
midpoint or if the module area inside the image is less than 1/4 of the expected
module area. Module areas outside the image can result from cropping the
original image and can mark quite large module groups as unknown. A simple
extension to the image intensity midpoint decision is a threshold that would
mark the module value unknown if the module area mean does not differ
enough from the midpoint intensity. This is, however, detrimental when module
side length is around 2 pixels, as the effect of edges on the area mean gets
quite high. This usually leads to a situation where clearly black modules that
are surrounded by white modules, and the other way around, will be marked
as unknown.

Marking the module value as unknown, however, is useful when we want to
make the value decoding more resilient to errors. For example, Reed-Solomon
error correction method[104] that is used in many barcode standards[73–77]
can correct more errors if error locations are known[86]. This is helpful when
a relatively large amount of modules gets cropped from the barcode image.
Knowing that the barcode has a large amount of unknown modules can help
us to decide if the area is really a barcode or just some noise that happens to
have a similar structure as the finder pattern.

4.3. DETECTOR DESIGN 65

We could improve this module value reading method to detect unknown
module values by using different module value calculation criteria for small
module sizes than what is used for large modules. With small modules (side
length around 2 pixels) we need to take into account the fact that pixel values
near borders have quite a large impact compared to the whole module area.
With larger module sizes we will have a situation where occlusion comes into
play and the impact of edges over the module area diminishes. For example,
picture-in-picture functionality shown in figure 2.1 will result in a small
barcode covering a part of a larger one.

Another possible module value determination method for small modules
would be to use weighted mean that gives higher weights to the pixels that
are closer to the center of the module. We could also take the edge model
into account instead of treating edge pixels as having just a single color value,
they could be divided into black and white parts according to the estimated
edge positions. This would also provide us with a prior value for the module
and reading the actual pixel values would give us some level of confidence
about the module being at that prior value.

66 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

This chapter determines the limits of the information encoding and decoding
method described in the previous chapter. The evaluation setup is first
described in section 5.1. Then the test cases in section 5.2 focus on finding
out how well this detector can detect the barcode from images that have a
barcode and are distorted by scaling and image compression. Section 5.3 then
tests how well this detector handles situations where there can also be other
data besides the barcode in the image.

5.1 Evaluation setup

The different test cases have their own specific characteristics, but the test data
creation and some detector parameters stay the same. Barcode images were
created by using the bilinear interpolation model described in section 4.3.1
that creates image samples from the ideal barcode model. The resulting image
samples are rounded to the nearest integer, rounding down if the sample value
is exactly at the midpoint of two different integer values. The resulting image
is an 8-bit image that provides us with 256 different intensity values. Image
values are in an equally spaced scale of 0–1 in the processing phase. This
enables us to express detector parameters in range of 0–1 instead of making
them bit-depth dependent.

In the actual test cases we mainly change the edge intensity threshold τI
and the pattern match limit εM (section 4.3.3), as these parameters make the
largest difference on the detector performance. Values of these parameters are
varied in a grid search fashion over the largest realistic value range for each
parameter. The edge intensity threshold τI gets values 0.5, 0.6, 0.7, 0.8, and
0.9. Pattern match limit εM gets values of 1 %, 2 %, 5 %, 10 %, 15 %, and
20 %. The other selectable detector parameters stay constant during the test

67

68 CHAPTER 5. EVALUATION

and only the test data changes. Pattern narrowness limit εN (section 4.3.7)
has value that can stretch 16:9 image onto 9:16 with 10% error, or the other
way around. The module width factor δmodule that determines the length of
the line segment resulting from a successful pattern match (section 4.3.3) has
value of 1.

Barcode readout is accepted as successful if the all barcode module values
match with the expected ones. No effort was made to see how many of the
invalid detections could be fixed by using error correction, as its results would
depend on the codeword placement and size (section 4.1.3).

5.2 Detection limits

Finding out the detection limits of this detector provides us information about
how small module size we can reliably put through the video communication
system at different compression levels. First we try to find out the minimal
module size in the ideal situation that only applies the distortion model
described in section 4.3.1 and integer quantization of resulting values. Then
the second test case applies varying levels of lossy image compression to the
barcode image and tries to find out the minimal barcode size and decoder
parameters for each compression level. The last test case related to detection
limits looks how this detector behaves when the barcode image is heavily
upscaled with different interpolation filters.

5.2.1 The minimal module size

Determining the smallest module size that is detectable by the detector in
the optimal case provides us knowledge about how small barcodes we can
find before we apply any image compression. The test case here is to create
differently sized versions of the same barcode with module size of 1.5–3.0
pixels changing in steps of 0.1 pixels. Each barcode is displaced by 0.0–0.9
pixels in 0.1 pixel intervals in the horizontal and in the vertical direction.
This displacement is to ensure that barcode modules will encounter similar
distortions near module edges. Each displacement and module size has 500
randomly generated barcode values.

Table 5.1 shows what is the minimum module size for each selected
parameter pair. All detector parameter variations result in the same minimum
barcode module size and therefore table 5.2 shows what happens when the
module size goes 0.1 pixels smaller than the module size that has 100 %
detection rate with the test data. This shows more variation in detector

5.2. DETECTION LIMITS 69

Table 5.1: The smallest module size and the strictest parameter values that
lead to a successful detection of all barcode module values with different
displacements.

εM \τI 0.5 0.6 0.7 0.8 0.9

1 % 1.9 1.9 1.9 1.9 1.9
2 % 1.9 1.9 1.9 1.9 1.9
5 % 1.9 1.9 1.9 1.9 1.9
10 % 1.9 1.9 1.9 1.9 1.9
15 % 1.9 1.9 1.9 1.9 1.9
20 % 1.9 1.9 1.9 1.9 1.9

Table 5.2: Successful detection rate for 0.1 pixels smaller module sizes than
what is needed for 100% successful detection rate. Rounded down to the
nearest 0.1 percentage point.

εM \τI 0.5 0.6 0.7 0.8 0.9

1 % 81.4 % 81.4 % 81.4 % 81.4 % 49.0 %
2 % 81.4 % 81.4 % 81.4 % 81.4 % 49.0 %
5 % 89.2 % 89.2 % 89.2 % 89.2 % 49.0 %
10 % 97.9 % 97.9 % 97.9 % 96.5 % 52.2 %
15 % 99.6 % 99.6 % 99.6 % 99.0 % 55.5 %
20 % 99.9 % 99.9 % 99.9 % 99.8 % 56.9 %

performance with relation to parameter values, where less strict detector
parameters provide higher recognition rate.

These results can be explained by the fact that the detector is comparing
only one row or column based sample sequence at a time. This leads to
ignoring the neighboring sequences and this way results in an invalid edge
position estimate when the edge is on sample points lying on corners between
black and white modules. When the module size is at least 2.0 pixels, we will
always have a sample sequence that results in a correct edge placement, as a
module will always fully cover at least one sample point area. Module size
smaller than 2.0 pixels will therefore result in edge location estimate error
that goes over the pattern match limit εM . This leads to noticeably increasing
detection rate for 1.8 pixel modules in table 5.2 when the maximum allowed
pattern error is increased. Effects of the minimum edge intensity threshold
τI are visible only with the most strict values, as factors affecting the edge
intensity affect also its estimated location. The overlapping candidate area
elimination (section 4.3.7) also causes failures in the barcode detection. This

70 CHAPTER 5. EVALUATION

is because locations in the barcode area where a partial finder pattern may
form (figure 4.11(a)) can result in finder patterns with higher intersection
score than a partial detection of the actual finder pattern has.

5.2.2 Image compression

Image compression adds distortions that we do not take into account. This
test case evaluates how varying compression amount changes the minimal
fully recognized module size. The compression method used in this test is the
JPEG image compression[105] described in appendix A. JPEG compression
applies similar lossy compression method and data reduction operations as
video encoders do, but with less complexity and less parameters to select.
JPEG compression makes these test cases more easy to repeat, as it does not
have that many dependencies on a certain encoder, encoder version, and on
the variation of encoder parameters. We only have one parameter to vary, the
JPEG quality level. In this test case we use JPEG quality levels 5 %, 10 %,
20 %, 40 %, and 80 %. The result of compressing a natural image by different
quality levels is visible from figure 5.1.

Test images have module size of 2.0, 2.5, 3.0, 4.0, and 8.0 pixels. For
each module size we randomly generate 10000 barcode images with random
displacement of 0.0–8.0 pixels. This displacement is to make sure that the
barcode will not always be at the same position relative to the JPEG block
boundary. Then each image is compressed by the used JPEG library and fed
to the barcode detector.

Table 5.3 shows the most strict parameters with the smallest module size
where all the 10000 images were successfully recognized. The most strict
parameter value pair was determined by selecting the largest minimum edge
intensity threshold τI and then the smallest corresponding pattern match limit
εM . We can see that compression levels that result in high quality natural

Table 5.3: The smallest module size and the strictest parameter values that
lead to the successful detection of all lossily compressed test images for each
quality level.

Quality Minimum module size Edge intensity Location error

5 % 4.0 0.6 20 %
10 % 3.5 0.7 20 %
20 % 2.5 0.5 20 %
40 % 2.0 0.6 20 %
80 % 2.0 0.8 10 %

5.2. DETECTION LIMITS 71

(a) Original (b) 80 % (c) 40 %

(d) 20 % (e) 10 % (f) 5 %

Figure 5.1: A comparison how a natural image looks like with the same
compression levels that are used in the evaluation of quality setting influence
on the detector.

images, like 40 % and 80 %, do not need a large module size for successful
detection. Images with lower quality levels result in a larger module size and
also require less strict detector parameters. This is due to the fact that when
we want to find out the smallest detectable module size, then naturally the
less strict detectors are able to detect smaller module sizes. However, when
the module size gets larger, then parameters can also be less strict, as the
influence of a single pixel gets smaller and image compression causes relatively
smaller errors for the edge localization. There can also be spurious candidate
barcode area eliminations, as in the test case determining the smallest barcode
module size.

5.2.3 Heavily upscaled images

We are also interested in the behavior of this detector when the barcode image
is heavily upscaled. Section 4.3.1 describes some often used image interpolation

72 CHAPTER 5. EVALUATION

Table 5.4: The amount of invalid detections for different interpolation methods.
Total sample size is 10000 randomly generated source images with a scaling
factor of 15.

(a) Bilinear

εM \τI 0.5 0.6 0.7 0.8 0.9

1 % 0 0 0 0 0
2 % 0 0 0 0 0
5 % 0 0 0 0 0
10 % 0 0 0 0 0
15 % 0 0 0 0 0
20 % 1 1 1 1 1

(b) Bicubic

0.5 0.6 0.7 0.8 0.9

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

(c) Lanczos3

0.5 0.6 0.7 0.8 0.9

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 1 1

methods and their properties when they are applied to step edges. The goal
of this test case is to see if heavy two-dimensional interpolation affects the
detector performance.

The test data for this test case is 10000 barcodes that originally have 8
pixel module size with random displacement of 0.0–8.0 pixels. This image is
then separately upscaled by the factor of 15 by using bilinear[23], bicubic[23],
and Lanczos3[100] interpolation. This results in a barcode that is 1080× 1080
pixels in size.

Table 5.4 shows how many invalid detections there are for each scaling
method with different parameters. We can see that there always is one
unsuccessful detection for the largest allowed pattern match limit εM in
bilinear interpolation. These invalid detections result from spurious finder
pattern detections in the blurred edge areas. This leads to merging of different
finder pattern areas into one, as show in figure 5.2. In this figure pattern
matches related to real partial finder pattern detections are shown in red and
invalid finder pattern detections resulting from the blurred edges are shown
as yellow bars in figure 5.2(a). Blue color shows how large merge area the
20% pattern match limit results in. When blue areas overlap, they make the
different line segments to merge with each other, as explained in section 4.3.4.
This will make spurious pattern matches to act as a bridge between the two
red finder pattern match groups and makes these groups merge with each
other.

The median pattern match segment merging method will then pull the
resulting final pattern match segment to the invalid upper pattern match,
shown as a green bar in figure 5.2(b). The red cross in the same figure indicates
the center of the correct finder pattern.

5.3. TESTING FOR FALSE POSITIVES 73

(a) (b)

Figure 5.2: Interpolated image with (a) segments resulting from different
pattern matches, and (b) merged line segments. Red color shows pattern
match segments closest to the real pattern center. Yellow indicates spurious
matches and matches that are not placed at the real pattern center. Blue
shows the area where pattern match line segments get merged.

This situation where few outliers can cause detection failure on otherwise
clear finder pattern match groups could be mitigated by making the relative
area that a single pattern match covers relatively smaller as the module size
increases. This would be in line with the fact that single image pixels are
also smaller in relation to the barcode area. Currently the detector is mostly
designed for small barcode module sizes where there is no strong blurring and
therefore a smaller chance for spurious finder pattern matches to arise.

5.3 Testing for false positives

False positive testing concentrates on finding out how robust this detector is
when the video image is something that we can encounter in a normal video
communication situation. This enables us to see if we can use this detector
to include the barcode image as a marker alongside with normal video data.
The two test cases for false positives are meant to determine how well this
detector works with video streams that could be captured by a camera and
with images that result from data sharing.

5.3.1 Natural video sequences

Natural video sequences provide us a way to see if the detector returns
false positive matches for situations that may occur in face-to-face video
conferencing situations. The used test sequences are listed in appendix B and

74 CHAPTER 5. EVALUATION

they include material with mostly low-frequency components corresponding
to the situation for which most video encoders and their parameters are
optimized for. The test setup is the same as the test setup for detection limits
in section 5.2 where the edge intensity threshold τI and the pattern match
error limit εM are varied between their realistic minimum and maximum
values.

Table 5.5(a) shows how many barcode candidate patterns we have detected
for each parameter pair. As we can expect, the potential for erroneous barcode
detections rises sharply when the maximum allowed edge location error is
increased. Also, the edge intensity threshold clearly affects the potential false
positive rate, but to a lesser extent. Table 5.5(b) then shows how many of
those potential detections result in an actual false positive pattern detection
after candidate finder patterns are eliminated by using the elimination phases
described in section 4.3.7. We can see that we have 1 false positive detection
that does not repeat with higher allowed edge errors. This false positive
detection gets eliminated by the elimination phase that removes overlapping
barcode area candidates as there are more potential barcode candidates in the
same image that partially cover each other.

Table 5.6 shows how many potential barcode areas each elimination phase
removes. These elimination phases are applied in order and naturally phases
that are applied first remove more invalid matches than phases that are applied
later. We can see from table 5.6(a) that the intersection score elimination
phase eliminates most of the spurious matches. Intersection score elimination
phase, however, has a property where the higher required minimum edge
intensity criteria with higher allowed pattern match error limits (15 % and 20
%) make the intersection score elimination method to work less well. However,
the narrowness elimination phase takes up most of what the intersection

Table 5.5: Total candidate barcode areas in 36131 natural images and spurious
pattern detections resulting from these areas.

(a) Barcode candidate count.

εM \τI 0.5 0.6 0.7 0.8 0.9

1 % 1 0 0 0 0
2 % 50 45 27 7 0
5 % 1327 1084 556 113 16
10 % 16459 13029 5989 1882 229
15 % 57433 45054 22910 7300 2384
20 % 124600 94251 52291 19654 6823

(b) Spurious detection count.

0.5 0.6 0.7 0.8 0.9

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

5.3. TESTING FOR FALSE POSITIVES 75

Table 5.6: Relative elimination rates in natural video samples for each elimina-
tion phase. Elimination phases are applied in the order listed and one sample
is eliminated at most only once.

(a) Intersection score.

εM \τI 0.5 0.6 0.7 0.8 0.9

1 % 100.0 - - - -
2 % 100.0 100.0 100.0 100.0 -
5 % 100.0 100.0 100.0 100.0 100.0
10 % 99.7 99.7 99.9 99.9 99.6
15 % 96.9 96.8 94.8 88.7 71.6
20 % 92.4 92.0 88.7 79.6 64.5

(b) Narrowness.

0.5 0.6 0.7 0.8 0.9

0.0 - - - -
0.0 0.0 0.0 0.0 -
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.1 0.0
1.4 1.9 4.2 9.4 21.1
2.5 3.7 7.2 14.9 24.8

(c) Overlap.

εM \τI 0.5 0.6 0.7 0.8 0.9

1 % 0.0 - - - -
2 % 0.0 0.0 0.0 0.0 -
5 % 0.0 0.0 0.0 0.0 0.0
10 % 0.0 0.0 0.0 0.0 0.0
15 % 0.0 0.0 0.0 0.0 0.0
20 % 0.2 0.1 0.0 0.0 0.9

(d) Finder pattern.

0.5 0.6 0.7 0.8 0.9

0.0 - - - -
0.0 0.0 0.0 0.0 -
0.0 0.0 0.0 0.0 0.0
0.3 0.3 0.1 0.0 0.4
1.7 1.2 0.9 2.0 7.3
4.9 4.2 4.1 5.5 9.9

score elimination phase lets through. This strongly suggests that when the
minimum required edge intensity is set higher, the accepted edges matches
create patterns that look more like the full finder pattern, but are narrower.
The higher required edge intensity makes the accepted edge matches to be
further away from each other and this way it quite naturally leads to a situation
where there are more narrow barcode areas with higher edge intensity. Wider
pattern matches result in a larger potential area where horizontal and vertical
segment intersections can occur, as described in section 4.3.4. This leads to a
situation where one large horizontal segment match can easily cover small
vertical segment matches and result in a large and narrow barcode area match.

Table 5.6(c) shows that the area overlap check elimination phase is mainly
applied when larger allowed errors result in more potential barcode area
candidates. And as table 5.6(d) shows, most barcode matches that pass the
intersection and narrowness elimination phases are eliminated by the finder
pattern validity elimination phase. Although it now catches all but one invalid

76 CHAPTER 5. EVALUATION

finder pattern matches, it still lets one through that could be eliminated by
making the module value reading give errors if the average module value is
not far enough from the intensity midpoint for larger module sizes.

5.3.2 Data sharing

Data sharing is a use case scenario where video communication participants
view commonly shared data that usually is computer generated. This data
may come from screen sharing, from shared work area, or from other data
sources, like lecture slides. The general screen sharing situation usually displays
application windows and some text and images among them. The shared
work area enables the creation of content in writing and drawing between
participants. Other use cases for screen sharing could be, for example, a remote
lecture where remote participants may view the lecture slides and the lecturer
at the same time. As this detector uses strong edges as the basis for detection,
these data sharing cases should provide favorable ground for making this
detector to detect false positives.

Data sharing use cases have quite a large variation in the content that
they can present, even though the content usually is computer generated.
This computer generated content includes application windows, varying sized
text with different scripts, diagrams, and other artificially generated drawings
and graphical elements. Data sharing cases may also include natural images
as part of the video data, especially as a part of a presentation and a web
page. Therefore instead of trying to generate artificial data, a sample of web
pages with varying content was selected to include a representative sample of
possible elements that can occur in data sharing.

A sample of 50 different sites was selected from the 500 most popular
sites on the web according to Alexa top 500 global sites ranking[106]. These
rankings are biased towards English and Chinese language, social media,
blog, search engine, advertising, shopping, company, various content sharing,
news, and entertainment sites. These may not provide a large enough content
type variation in itself and therefore sites with similar content were manually
reduced. Each site was then sampled for 20 randomly selected pages that were
accessible through the site’s home page. These subpages were selected to get
a more representative content sample than just the home page would provide.
A screen capture of the full page content was taken and these screen captures
were then used to further reduce the sample count to 200 pages out of 1000
pages that were then put through the barcode detector.

Table 5.7 shows how many barcode candidates were detected for each
parameter value pair of the edge intensity threshold τI and the pattern match
limit εM . We can see that when the allowed error by the pattern match

5.3. TESTING FOR FALSE POSITIVES 77

Table 5.7: The amount of spurious barcode matches in 200 web page capture
samples.

εM \τI 0.5 0.6 0.7 0.8 0.9

1 % 0 0 0 0 0
2 % 0 0 0 0 0
5 % 0 0 0 0 0
10 % 0 0 0 0 0
15 % 0 0 0 0 0
20 % 6 1 1 1 1

limit εM goes to 20%, we start seeing some false positive matches. Those
single false positive matches for all edge intensity thresholds τI come from a
single image that includes a white font on black background that has spacing
and black-and-white ratios similar to the finder pattern. This suggests that
we could have much more false positive matches if we had white text on
black background with appropriate font. Currently most page samples have
the standard black text on white background style. Barcode area candidate
elimination results for different elimination phases are similar to the ones for
natural video sequences shown in table 5.6.

We can compare the data sharing results to the results from the natural
video sequence test case in the previous section. The natural video sequence
case includes 27 times more image sample points in total than this data
sharing test case but results only in 1 false positive detection over the whole
parameter and sample set. The difference in the data sharing case compared
to natural video data is that in natural videos the image changes a little bit
all the time so all false positive detections will probably last only a short
while. In the data sharing case, however, the same image will probably stay
on the screen until it disappears out of the view. This makes it hard to use
temporal checks to eliminate spurious matches that last only for one frame.

78 CHAPTER 5. EVALUATION

Chapter 6

Discussion

Using barcode that is optimized for video communication system testing
provides an easy and efficient way to encode small amounts of data into
images. This barcode then provides spatial and temporal information about
where the encoded data resides in. In addition, image compression tests in
section 5.2.2 show that even with quite heavy compression we can have a
decodable barcode over a small 36× 36 pixel area.

This data encoding method, however, has a few limitations and assumptions
that make at least this implementation unusable for certain use cases. The
detector has an assumption that we have full control of the input and output
images of the video communication system. We also assume that image
distortions come from video encoding and layout generation. In cases where
we can not control the video input and output, we need to use some external
video capture/display device. Then we need take into account the properties
of the display device, illumination intensity and its variations, image noise,
rotation, skew, and frame rate differences between the capture and display
device. This makes the selected barcode structure and also the horizontal
and vertical edge matching strategy less optimal than structures and search
methods that also take rotation into account.

Different phases that work on the matched finder pattern could also be
improved. The linear relationship between the module size and finder pattern
match error in the finder pattern match merging phase makes this detector
quite sensitive to pattern match outliers when the module size and pattern
match error limit are large. This could be improved in such a way that the area
for finder pattern match merging would not depend linearly on the module
size. Match merging could also have a separate parameter managing the area
where the mergeable pattern is searched for. As a larger module size also has
more matches in module’s center, match merging could benefit from more
intelligent clustering approaches and outlier detection than just using a simple

79

80 CHAPTER 6. DISCUSSION

rectangle overlapping detection criteria for determining if a certain pattern
match point belongs to the same cluster.

Reading the module value currently depends only on the average intensity
of the area where the module is estimated to be in. We could, for example, use
the standard deviation of sample values in case of a larger module and mark
modules with high standard deviation as invalid. This would give the error
correction a better chance to recover from barcode area damage, as we would
know the location of the damaged modules. Different data encoding strategies
were briefly discussed in section 4.1.3 with relation to error resiliency but
nothing final was presented. This is because module placement depends on
the error resiliency properties we want to take into account. The codeword
size and placement also depends on the used error correction algorithm and
these also depend on how many bits we want to use for the actual data in
relation to error correction.

The barcode design and detection tries to take some of the distortions
that it encounters into account. However, we treat distortions caused by the
transform coding and quantization, and video transcoding as a black box. This
is compensated by giving a higher error margin for finder pattern matching.
Even though the detector can detect the barcode from one encoding pass that
results in bad quality, multiple encoding passes with different transform block
alignments might give worse results.

Different elimination phases to reduce barcode area candidates, introduced
in section 4.3.7, also cause detection errors, as analyzed in the evaluation
chapter. These could be avoided by using a finder pattern that is two modules
wide. This would enable the detection of a smaller module size, at least for
the finder pattern, but would lead to barcode occupying 10× 10 module area
instead of 9× 9 area and would therefore reduce the size of data encoding
modules over the same image area.

Chapter 7

Conclusions

By using a custom barcode type as a data encoding method we created a
method that can be used as a part of automatic verification process for a video
communication system. We first examined how the video image goes through
such a system and what distortions it will encounter. We then examined what
methods there are that can be used to encode discrete data into images and
selected two-dimensional barcode as the information encoding method. This
resulted in the custom barcode that is designed to take video communication
system constraints into account. The detector to detect this barcode uses
edges and their relative distance difference as the basic feature for pattern
detection. This results in ability to detect JPEG compressed barcode images
that have 2.0–4.0 pixel sized modules depending on the compression level.

Barcodes are widely used for object identification and with reduced com-
plexity can be applied to create an efficient system for functional verification
of a video communication system. There have been no previous references
about using barcodes for this type of testing in the literature. However this is
a natural use case for barcodes as a data encoding method and there still can
exist proprietary implementations of such testing methodology. This can be
compared to using text and optical character recognition to transmit data by
using images, but with higher data encoding density.

Testing by data injection limits it to cases where we can modify the
data that the communication system gets and can read the processed image.
From testing point of view this is not a problem, as we usually control the
environment in which tests are run. If, on the other hand, we would like to
check that existing video data goes through the system without changing the
video image itself, we would have to use something like scale invariant feature
detection. In this case we would need to rely on the passing video image
to have enough features that can be detected and use them to distinguish
different streams from each other. This approach was, however, not selected

81

82 CHAPTER 7. CONCLUSIONS

as we aim for the situation where we can control the inputs and analyze the
output with high accuracy.

This detector implementation is just one of many possible alternatives and
it can be improved, especially for small module sizes in cases where the image
interpolation does not behave like an averaging filter. Also the transform
coding part of the image compression is treated as a black box. Possible
distortions rising from intra- and inter-frame transform coding and from
multiple compression steps are mainly taken into account by increasing the
error limits of the detector. Also, this detector does not use any information
about consecutive frames and video encoding process. Taking the temporal
information into account could possibly improve detector’s performance by
taking into account that when we know the location and the exact value of a
barcode, we could treat that part of the frame as the original uncompressed
frame.

Bibliography

[1] Global Industry Analysts, “Video conferencing – a global strategic
business report,” 2011, [Accessed: 20 Jun. 2012]. [Online]. Available:
http://www.strategyr.com/Video Conferencing Market Report.asp

[2] Ookla, “Household download index for period Dec 17, 2009 —
Jun 17, 2012,” 2012, [Accessed: 18 Jun. 2012]. [Online]. Available:
http://www.netindex.com/

[3] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: using GUI screenshots
for search and automation,” in 22nd annual ACM symposium on User
interface software and technology, Victoria, BC, 2009, pp. 183–192.

[4] TestPlant, “eggPlant,” [Accessed: 1 Apr. 2013]. [Online]. Available:
http://www.testplant.com/products/eggplant/

[5] A. C. Bovik, Ed., Handbook of Image and Video Processing (Commu-
nications, Networking and Multimedia), 2nd ed. Elsevier Academic
Press, 2005.

[6] S. Firestone, T. Ramalingam, and S. Fry, Voice and video conferencing
fundamentals. Indianapolis: Cisco Press, 2007.

[7] A. Hoff, “Justin.tv’s Live Video Broadcasting Architecture,” Mar. 2010,
[Accessed: 2 Jul. 2012]. [Online]. Available: http://highscalability.com/
blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html

[8] D. Ferrari, “Client requirements for real-time communication services,”
RFC 1193, Nov. 1990.

[9] C. Nicolaou, “An architecture for real-time multimedia communication
systems,” IEEE Journal on Selected Areas in Communications, vol. 8,
no. 3, pp. 391–400, Apr. 1990.

83

http://www.strategyr.com/Video_Conferencing_Market_Report.asp
http://www.netindex.com/
http://www.testplant.com/products/eggplant/
http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html
http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html

84 BIBLIOGRAPHY

[10] Y. Wang and Q.-F. Zhu, “Error control and concealment for video
communication: a review,” Proceedings of the IEEE, vol. 86, no. 5, pp.
974–997, May 1998.

[11] J. Garrett-Glaser, “x264: the best low-latency video streaming platform
in the world,” 2010, [Accessed: 6 Jul. 2012]. [Online]. Available:
http://x264dev.multimedia.cx/archives/249

[12] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,”
ACM Queue, vol. 9, no. 11, pp. 40–54, Nov. 2011.

[13] T. Kim and M. Ammar, “A comparison of heterogeneous video multicast
schemes: Layered encoding or stream replication,” IEEE Transactions
on Multimedia, vol. 7, no. 6, pp. 1123–1130, Dec. 2005.

[14] H. M. Radha, M. van der Schaar, and Y. Chen, “The MPEG-4 Fine-
Grained Scalable Video Coding Method for Multimedia Streaming over
IP,” IEEE Transactions on Multimedia, vol. 3, no. 1, pp. 53–68, Mar.
2001.

[15] J.-W. Suh and Y.-S. Ho, “Error concealment techniques for digital TV,”
IEEE Transactions on Broadcasting, vol. 48, no. 4, pp. 299–306, Dec.
2002.

[16] J. M. Boyce and R. D. Gaglianello, “Packet loss effects on MPEG video
sent over the public Internet,” in 6th ACM international conference on
Multimedia, Bristol, 1998, pp. 181–190.

[17] Q.-F. Zhu and L. Kerofsky, “Joint source coding, transport processing,
and error concealment for H.323-based packet video,” in Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol.
3653, Dec. 1998, pp. 52–62.

[18] A. C. Bovik, Ed., The Essential Guide to Video Processing, 2nd ed.
Elsevier Academic Press, 2009.

[19] T. Levent-Levi, “What Layouts Should a Dual Video Sys-
tem Support?” Dec. 2009, [Accessed: 1 Aug. 2012]. [On-
line]. Available: http://blog.radvision.com/voipsurvivor/2009/12/
07/what-layouts-should-a-dual-video-system-support/

[20] T. Levent-Levi, “What Layouts Do You Need in Your HD
Videophone?” Nov. 2009, [Accessed: 1 Aug. 2012]. [On-
line]. Available: http://blog.radvision.com/voipsurvivor/2009/11/
30/what-layouts-do-you-need-in-your-hd-videophone/

http://x264dev.multimedia.cx/archives/249
http://blog.radvision.com/voipsurvivor/2009/12/07/what-layouts-should-a-dual-video-system-support/
http://blog.radvision.com/voipsurvivor/2009/12/07/what-layouts-should-a-dual-video-system-support/
http://blog.radvision.com/voipsurvivor/2009/11/30/what-layouts-do-you-need-in-your-hd-videophone/
http://blog.radvision.com/voipsurvivor/2009/11/30/what-layouts-do-you-need-in-your-hd-videophone/

BIBLIOGRAPHY 85

[21] F. Ghetti, “Top, Side or Bottom – Camera Position-
ing Matters,” Mar. 2010, [Accessed: 28 Aug. 2012]. [On-
line]. Available: http://blog.radvision.com/voipsurvivor/2010/03/
10/top-side-or-bottom-camera-positioning-matters/

[22] T. Levent-Levi, “HD Scaling Made Easy(ier),” Dec. 2009, [Accessed: 9
Aug. 2012]. [Online]. Available: http://blog.radvision.com/voipsurvivor/
2009/12/14/hd-scaling-made-easyier/

[23] N. A. Dodgson, “Image resampling,” University of Cambridge, Computer
Laboratory, Tech. Rep. UCAM-CL-TR-261, Aug. 1992.

[24] R. Dugad and N. Ahuja, “A fast scheme for image size change in the
compressed domain,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 11, no. 4, pp. 461–474, Apr. 2001.

[25] P. Heckbert, “Color image quantization for frame buffer display,” SIG-
GRAPH Computer Graphics, vol. 16, no. 3, pp. 297–307, Jul. 1982.

[26] E. Dubois and J. Konrad, “Estimation of 2-D Motion Fields from
Image Sequences with Application to Motion-Compensated Processing,”
Motion Analysis and Image Sequence Processing, vol. 220, pp. 53–87,
1993.

[27] Information technology – Generic coding of moving pictures and associ-
ated audio information: Systems, ISO/IEC Standard 13 818-1:2007.

[28] Line transmission of non-telephone signals – Video Codec for Audiovisual
Services at P X 64 Kbits, ITU-T Recommendation H.261, 1993.

[29] Information technology – Coding of audio-visual objects – Part 2: Visual,
ISO/IEC Standard 14 496-2:2004.

[30] Series H: audiovisual and multimedia systems – Infrastructure of audio-
visual services – Coding of moving video – Video coding for low bit rate
communication, ITU-T Recommendation H.263, 2005.

[31] Series H: audiovisual and multimedia systems – Infrastructure of audio-
visual services – Coding of moving video – Advanced video coding for
generic audiovisual services, ITU-T Recommendation H.264, 2012.

[32] C. Poynton, Digital Video and HDTV Algorithms and Interfaces. San
Francisco: Morgan Kaufmann Publishers, 2003.

http://blog.radvision.com/voipsurvivor/2010/03/10/top-side-or-bottom-camera-positioning-matters/
http://blog.radvision.com/voipsurvivor/2010/03/10/top-side-or-bottom-camera-positioning-matters/
http://blog.radvision.com/voipsurvivor/2009/12/14/hd-scaling-made-easyier/
http://blog.radvision.com/voipsurvivor/2009/12/14/hd-scaling-made-easyier/

86 BIBLIOGRAPHY

[33] R. C. Gonzalez and R. E. Woods, Digital image processing, 2nd ed.
Upper Saddle River: Prentice Hall, 2002.

[34] Studio encoding parameters of digital television for standard 4:3 and
wide-screen 16:9 aspect ratios, ITU-R Recommendation BT.601, 2011.

[35] Parameter values for the HDTV standards for production and interna-
tional programme exchange, ITU-R Recommendation BT.709, 2002.

[36] G. Chan, “Toward better chroma subsampling,” SMPTE Motion Imaging
Journal, vol. 117, no. 4, pp. 39–45, 2008.

[37] Series P: Telephone transmission quality – Audiovisual quality in multi-
media services – Principles of a reference impairment system for video,
ITU-T Recommendation P.930, 1996.

[38] M. Robertson and R. Stevenson, “DCT quantization noise in com-
pressed images,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 15, no. 1, pp. 27–38, Jan. 2005.

[39] C. F. John, J. Libert, and P. Roitman, “Mosquito noise in MPEG-
compressed video: test patterns and metrics,” in SPIE Proceedings:
Human Vision and Electronic Imaging V, vol. 3959, Jun. 2000, pp.
604–612.

[40] Y. Michalevsky and T. Shoham, “Fast H.264 Picture in Picture (PIP)
transcoder with B-slices and direct mode support,” in 15th IEEE
Mediterranean Electrotechnical Conference (MELECON), Apr. 2010, pp.
862–867.

[41] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz,
“Adaptive deblocking filter,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, no. 7, pp. 614–619, Jul. 2003.

[42] Series H: audiovisual and multimedia systems – Infrastructure of audio-
visual services – Coding of moving video – High efficiency video coding,
ITU-T Recommendation H.265, 2013.

[43] C.-M. Fu, C.-Y. Chen, Y.-W. Huang, and S. Lei, “Sample adaptive
offset for HEVC,” in IEEE 13th International Workshop on Multimedia
Signal Processing (MMSP), Hangzhou, Oct. 2011, pp. 1–5.

[44] K. Miyazawa, T. Murakami, A. Minezawa, and H. Sakate, “Complexity
reduction of in-loop filtering for compressed image restoration in HEVC,”
in Picture Coding Symposium (PCS), Krakóv, 2012, pp. 413–416.

BIBLIOGRAPHY 87

[45] P. Assuncao and M. Ghanbari, “A frequency-domain video transcoder for
dynamic bit-rate reduction of MPEG-2 bit streams,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 8, no. 8, pp. 953–967,
Dec. 1998.

[46] S. Shen, W. Shen, Y. Fabn, and X. Zeng, “A unified 4/8/16/32-point
integer IDCT architecture for multiple video coding standards,” in IEEE
International Conference on Multimedia and Expo (ICME), Melbourne,
Jul. 2012.

[47] Series H: audiovisual and multimedia systems – Infrastructure of au-
diovisual services – Systems and terminal equipment for audiovisual
services – Terminal for low bit-rate multimedia communication, ITU-T
Recommendation H.324, 2009.

[48] GSM Arena, “Phone finder,” [Accessed: 7 Jan. 2013]. [Online]. Available:
http://www.gsmarena.com/search.php3

[49] C.-h. Chen, W. Härdle, and A. Unwin, Eds., Handbook of Data Visual-
ization, 1st ed. Springer-Verlang Berlin Heidelberg, 2008.

[50] C. Ware, Information Visualization: Perception for Design, 2nd ed. San
Francisco: Morgan Kaufmann Publishers, 2004.

[51] J. Breidenbach and D. L. Hecht, “Foreground/background document
processing with dataglyphs,” U.S. Patent US 6 641 053, Nov. 04, 2003.

[52] L. Eikvil, “Ocr – optical character recognition,” 1993. [Online].
Available: http://www.nr.no/∼eikvil/OCR.pdf

[53] I. Marosi, “Industrial OCR approaches: architecture, algorithms, and
adaptation techniques,” SPIE Proceedings: Document Recognition and
Retrieval XIV, vol. 6500, 2007.

[54] Character Set for Optical Character Recognition (OCR-A), ANSI INCITS
Standard 17-1981, 2002.

[55] Alphanumeric character sets for optical recognition – Part 2: Character
set OCR-B – Shapes and dimensions of the printed image, ISO Standard
1073-2:1976.

[56] R. Pointer, “A very tiny, monospace, bitmap font,” [Accessed: 6
Sep. 2012]. [Online]. Available: http://robey.lag.net/2010/01/23/
tiny-monospace-font.html

http://www.gsmarena.com/search.php3
http://www.nr.no/~eikvil/OCR.pdf
http://robey.lag.net/2010/01/23/tiny-monospace-font.html
http://robey.lag.net/2010/01/23/tiny-monospace-font.html

88 BIBLIOGRAPHY

[57] M. C. Koss, “Tiny (3x5) Font Created for the Apple II program
The Terminal,” [Accessed: 6 Sep. 2012]. [Online]. Available:
http://mckoss.com/jscript/tinyalice.htm

[58] T. Pavlidis, “A new paper/computer interface: two-dimensional symbol-
ogies,” in 15th International Conference on Pattern Recognition (ICPR),
Barcelona, 2000, pp. 145–151.

[59] S. W. Schilke and A. Rauber, “Long-term archiving of digital data on
microfilm,” International Journal of Electronic Governance, vol. 3, pp.
237–253, 2010.

[60] F. Petitcolas, “Watermarking schemes evaluation,” IEEE Signal Pro-
cessing Magazine, vol. 17, no. 5, pp. 58–64, Sep. 2000.

[61] P. Premaratne and F. Safaei, “2D Barcodes as Watermarks in Image Au-
thentication,” in 6th IEEE/ACIS International Conference on Computer
and Information Science (ICIS), Melbourne, Jul. 2007, pp. 432–437.

[62] I. J. Cox and M. L. Miller, “A review of watermarking and the importance
of perceptual modeling,” in Conference on Human Vision and Electronic
Imaging II, San Jose, CA, Jun. 1997, pp. 92–99.

[63] M. Kutter, “Watermarking resisting to translation, rotation, and scaling,”
in SPIE Conference on Multimedia Systems and Applications, Nov. 1998,
pp. 423–431.

[64] G. B. Rhoads, “Method for monitoring internet dissemination of image,
video, and/or audio files,” U.S. Patent 7 653 210, Jan. 26, 2010.

[65] J. J. ÓRuanaidh and T. Pun, “Rotation, scale and translation invariant
spread spectrum digital image watermarking,” Signal Processing, vol. 66,
no. 3, pp. 303–317, May 1998.

[66] I. Cox, J. Kilian, F. Leighton, and T. Shamoon, “Secure spread spectrum
watermarking for multimedia,” IEEE Transactions on Image Processing,
vol. 6, no. 12, pp. 1673–1687, Dec. 1997.

[67] M. Kutter, S. Bhattacharjee, and T. Ebrahimi, “Towards second gener-
ation watermarking schemes,” in Proceedings of IEEE International
Conference on Image Processing, vol. 1, 1999, pp. 320–323.

[68] P. M. J. Rongen, M. J. Maes, and K. W. van Overveld, “Digital
image watermarking by salient point modification: practical results,”

http://mckoss.com/jscript/tinyalice.htm

BIBLIOGRAPHY 89

Proceedings of SPIE: Proceeding of the Security and Watermarking of
Multimedia Contents, vol. 3657, pp. 273–282, 1999.

[69] J. Zhang, J. Li, and L. Zhang, “Video watermark technique in motion
vector,” in Proceedings of XIV Brazilian Symposium on Computer
Graphics and Image Processing, Oct. 2001, pp. 179–182.

[70] Information technology – Automatic identification and data capture tech-
niques – Code 128 bar code symbology specification, ISO/IEC Standard
15 417:2007.

[71] Information technology – Automatic identification and data capture
techniques – EAN/UPC bar code symbology specification, ISO/IEC
Standard 15 420:2009.

[72] Information technology – Automatic identification and data capture
techniques – Code 39 bar code symbology specification, ISO/IEC Standard
16 388:2007.

[73] Information technology – Automatic identification and data capture
techniques – QR Code 2005 bar code symbology specification, ISO/IEC
Standard 18 004:2006.

[74] Information technology – Automatic identification and data capture
techniques – Data Matrix bar code symbology specification, ISO/IEC
Standard 16 022:2006.

[75] Information technology – International symbology specification – Maxi-
Code, ISO/IEC Standard 16 023:2000.

[76] Information technology – Automatic identification and data capture
techniques – PDF417 bar code symbology specification, ISO/IEC Standard
15 438:2006.

[77] Information technology – Automatic identification and data capture
techniques – Aztec Code bar code symbology specification, ISO/IEC
Standard 24 778:2008.

[78] D. Parikh and G. Jancke, “Localization and Segmentation of A 2D
High Capacity Color Barcode,” in IEEE Workshop on Applications of
Computer Vision, Copper Mountain, CO, Jan. 2008, pp. 1–6.

[79] E. Ohbuchi, H. Hanaizumi, and L. Hock, “Barcode readers using the
camera device in mobile phones,” in International Conference on Cyber-
worlds, Tokyo, Nov. 2004, pp. 260–265.

90 BIBLIOGRAPHY

[80] Y. Liu, J. Yang, and M. Liu, “Recognition of QR Code with mobile
phones,” in Chinese Control and Decision Conference (CCDC), Jul.
2008, pp. 203–206.

[81] PAPERBACK (version 1.00). [Online]. Available: http://www.ollydbg.
de/Paperbak/index.html

[82] Standard for Information Technology - Portable Operating System
Interface (POSIX(R)), IEEE Standard 1003.1-2008.

[83] Uniform Symbology Specification – Code 16k, ANSI/AIM Standard BC7,
1995.

[84] ISS Bar code symbology specification – DotCode, AIM Specification ISS
DotCode, 2012.

[85] H. Kato and K. Tan, “2D barcodes for mobile phones,” in 2nd Inter-
national Conference on Mobile Technology, Applications and Systems,
Guangzhou, Nov. 2005, p. 8 pp.

[86] S. B. Wicker, Error control systems for digital communication and
storage. Upper Saddle River: Prentice-Hall, 1994.

[87] E. Ouaviani, A. Pavan, M. Bottazzi, E. Brunelli, F. Caselli, and M. Guer-
rero, “A common image processing framework for 2D barcode reading,”
in Seventh International Conference on Image Processing and Its Appli-
cations, vol. 2, Manchester, 1999, pp. 652–655.

[88] M. Rohs, “Real-world interaction with camera phones,” in 2nd Interna-
tional Symposium on Ubiquitous Computing Systems (UCS), Tokyo,
2005, pp. 74–89.

[89] H. Hu, W. Xu, and Q. Huang, “A 2D Barcode Extraction Method Based
on Texture Direction Analysis,” in Fifth International Conference on
Image and Graphics, Xi’an, Shanxi, Sep. 2009, pp. 759–762.

[90] Y. Liu and M. Liu, “Automatic Recognition Algorithm of Quick Response
Code Based on Embedded System,” in Intelligent Systems Design and
Applications, 2006. ISDA ’06. Sixth International Conference on, vol. 2,
Jinan, Oct. 2006, pp. 783–788.

[91] C.-H. Chu, D.-N. Yang, Y.-L. Pan, and M.-S. Chen, “Stabilization and
extraction of 2D barcodes for camera phones,” Multimedia Systems,
vol. 17, pp. 113–133, 2011.

http://www.ollydbg.de/Paperbak/index.html
http://www.ollydbg.de/Paperbak/index.html

BIBLIOGRAPHY 91

[92] L. K. Leong and W. Yue, “Extraction of 2D Barcode Using Keypoint
Selection and Line Detection,” in 10th Pacific Rim Conference on
Multimedia: Advances in Multimedia Information Processing, Bangkok,
2009, pp. 826–835.

[93] D.-T. Lin and C.-L. Lin, “Multi-symbology and Multiple 1D/2D Bar-
codes Extraction Framework,” in Advances in Multimedia Modeling,
Taipei, 2011, vol. 6524, pp. 401–410.

[94] H. Wang and Y. Zou, “2D Bar codes reading: solutions for camera
phones,” International Journal of Signal Processing, vol. 3, no. 3, pp.
164–170, 2006.

[95] Q. Liu, X. Li, M. Zou, and J. Zhou, “The multi-QR codes extraction
method in illegible image based on contour tracing,” in IEEE Interna-
tional Conference on Anti-Counterfeiting, Security and Identification
(ASID), Xiamen, 2011, pp. 51–56.

[96] M. Wang, L.-N. Li, and Z.-X. Yang, “Gabor filtering-based scale and
rotation invariance feature for 2d barcode region detection,” in Inter-
national Conference on Computer Application and System Modeling
(ICCASM), vol. 5, Taiyuan, Oct. 2010, pp. V5–34–V5–37.

[97] H. Wang and Y. Zou, “Camera Readable 2D Bar Codes Design and
Decoding for Mobile Phones,” in IEEE International Conference on
Image Processing, Atlanta, GA, Oct. 2006, pp. 469–472.

[98] ZBar bar code reader (version 0.10). [Online]. Available: http:
//zbar.sourceforge.net/

[99] libdecodeqr (version 0.9.3). [Online]. Available: http://trac.koka-in.org/
libdecodeqr

[100] K. Turkowski, “Filters for common resampling tasks,” in Graphics gems,
A. S. Glassner, Ed. San Diego, CA USA: Academic Press Professional,
Inc., 1990, pp. 147–165.

[101] D. Ziou and S. Tabbone, “Edge detection techniques - an overview,”
International Journal of Pattern Recognition and Image Analysis, vol. 8,
pp. 537–559, 1998.

[102] M. I. Shamos and D. Hoey, “Geometric intersection problems,” in 17th
Annual Symposium on Foundations of Computer Science, Houston, TX,
1976, pp. 208–215.

http://zbar.sourceforge.net/
http://zbar.sourceforge.net/
http://trac.koka-in.org/libdecodeqr
http://trac.koka-in.org/libdecodeqr

92 BIBLIOGRAPHY

[103] J. Bentley and T. Ottmann, “Algorithms for reporting and counting
geometric intersections,” IEEE Transactions on Computers, vol. C-28,
no. 9, pp. 643–647, Sep. 1979.

[104] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[105] Information Technology – Digital Compression and Coding of
Continuous-tone Still Images – Requirements and guidelines, ITU-T
Recommendation T.81, 1992.

[106] Alexa Internet, Inc., “Alexa Top 500 Global Sites,” [Accessed: 12 Dec.
2012]. [Online]. Available: http://www.alexa.com/topsites/global

[107] JPEG library (version 8d). [Online]. Available: http://www.ijg.org/

http://www.alexa.com/topsites/global
http://www.ijg.org/

Appendix A

Discrete cosine transform

The two-dimensional discrete cosine transform and its approximations are
the basic workhorse of the most used lossy transform based image and
video compression standards. The discrete cosine transform enables to apply
information reduction on each image block that results in a high compression
ratio with visually desirable results compared to the amount of data reduction.
This appendix describes the use of the discrete cosine transform that is used
in many lossy image and video compression methods[30, 33, 105] and some of
its implementation details for JPEG compressed images[105].

A.1 Block based discrete cosine transform

When applying the discrete cosine transform onto images, the original source
image is divided into a N × N pixel blocks and each block then has the
discrete cosine transform independently applied to it. The often used discrete
cosine transform for N ×N sized blocks is defined by:

F (u, v) =
2

N
C(u)C(v)

N−1∑
x=0

N−1∑
y=0

f(x, y) cos(
(2x+ 1)uπ

2N
) cos(

(2y + 1)vπ

2N
)

where
x, y = pixel domain coordinates {0, . . . , N − 1};
u, v = transform domain coordinates {0, . . . , N − 1};
C(u) = 1/

√
2 for u = 0, otherwise 1;

C(v) = 1/
√

2 for v = 0, otherwise 1.
The transformation is often carried out in such a way that the original

pixel domain values f(x, y) are centered around 0 and then transformed. The
transformed block is then quantized by using a quantization table Q in such a

93

94 APPENDIX A. DISCRETE COSINE TRANSFORM

v

u

(a) (b) (c)

Figure A.1: Properties of the discrete cosine transform. (a) Normalized basis
functions for 4x4 discrete cosine transform. Black indicates the smallest value
of the 4x4 basis function and white indicates the largest value. (b) Normalized
images resulting from transform blocks corresponding to each basis function,
showing the feature extracting properties of each basis function. (c) The
original 256×256 image to which the 4×4 discrete cosine transform is applied.

way that the quantization table element Q(u, v) divides the transform domain

value F (u, v). This results in a quantized value F̃ (u, v) = round(F (u,v)
Q(u,v)

) where

round() function rounds to the nearest discrete encodable value by some
rounding rule. The accuracy of quantized values depends on the amount of
bits that are used for encoding. Then these quantized values are compressed
by using some lossless coding method and encoded into a bit stream that
forms the image.

The decoded image value f̃(x, y) is calculated from quantized transform
values F̃ (u, v) by the inverse discrete cosine transform:

f̃(x, y) =
2

N

N−1∑
u=0

N−1∑
v=0

C(u)C(v)F̃ (u, v) cos(
(2x+ 1)uπ

2N
) cos(

(2y + 1)vπ

2N
).

Properties of the discrete cosine transform can be visualized by visualizing
the basis functions for each value F (u, v) of the transform. These basis functions
are visualized in figure A.1(a) for 4× 4 discrete cosine transform, where the
basis function image is normalized in such way that the maximum value of the
basis function is white and the minimum value of the basis function is black.
The upper left corner has basis function value for F (u, v) = F (0, 0) which
corresponds to equally weighted values for all block samples. Higher u and v
values correspond to higher frequencies in horizontal and vertical directions.
The result of applying these basis functions into the face image shown in

A.2. DISCRETE COSINE TRANSFORM IN JPEG 95

figure A.1(c) can be seen from figure A.1(b). Each block of figure A.1(b) has
been normalized in such a way that the minimum value corresponds to a black
pixel and the maximum value corresponds to a white pixel. The upper left
image results in 1/N resolution reduced version of the original image. Rows
correspond to vertical features, that is visible from the nose, and columns
correspond to horizontal features, that is visible from the mouth. Higher
values of u and v correspond to smaller scale features, higher frequencies. This,
combined with the properties of the human visual system, leads to quantization
matrices that reduce the importance of high frequency components by having
larger quantization constants in the lower right area of the quantization
matrix.

A.2 Discrete cosine transform in JPEG

The JPEG image format is probably the most widely used image format for
distributing natural images, as it is the default image format in most digital
cameras and in web based distribution. JPEG applies the discrete cosine
transform on 8× 8 non-overlapping blocks, separately for each image channel.
The quantization matrix in JPEG is also defined per channel basis and can
be different for each channel depending on the desired compression level.
Even though the JPEG standard does not force any specific quantization
matrix, an often used JPEG library implementation[107] derives the used
quantization matrices from the quantization tables given in Annex K of the
JPEG standard[105]. The JPEG image compression also often has a specific
quality level that is related to the desired compression level

To calculate the desired quantization matrices for the given quality level,
the JPEG library takes an integer valued quality level Q ∈ 1 . . . 100 and
converts it to a multiplier that creates the final quantization matrices from
the standard JPEG quantization tables shown in table A.1. The quality level
is first converted to an integer scaling factor C where

C =

{
5000/Q if 1 ≤ Q < 50
200− 2Q if 50 ≤ Q ≤ 100

Then this scaling factor C is applied to the example JPEG quantization
tables for the luma and subsampled chroma channels. The scaling factor C is
applied to the quantization table element Tij so that this results in an integer
valued quantization matrix element Qij by:

Qij =
CTij + 50

100
.

96 APPENDIX A. DISCRETE COSINE TRANSFORM

Table A.1: The example JPEG quantization matrices specified in the standard
for (a) the luma channel and (b) for chroma channels.

(a)

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

(b)

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

This value is then cut between [1 . . . Qmax] to fit to the values that the used
bit-depth supports and to prevent the division by zero. Often used bit depth is
8 bits per channel. This provides 256 distinct values between [0 . . . 255] which
results in Qmax

8 = 255. Figure A.2 shows how the minimum and the maximum
quantization value changes for 8-bit quantization matrices based on the JPEG
quality level. These values come from the minimum and the maximum value
in the example quantization table for the luma channel (table A.1(a)), as the
quantization table for the chroma channel (table A.1(b)) includes values that
fall between these extremes.

255

1
1 50 100

Q1,3 for T1,3 = 10

Q6,7 for T6,7 = 121

JPEG quality

Qij

Figure A.2: The minimum and maximum quantization matrix value depending
on the quality level that an often used JPEG library[107] produces for 8-bit
images.

Appendix B

Video test sequences

Test sequences that are used in section 5.3.1 to see if the detector detects false
positives in natural scenes are part of Xiph.org Video Test Media collection1.
Many of the images showing natural sequences are also created from screen
captures of these sequences. Table B.1 shows the name and other properties
of the used video files.

Table B.1: Video test sequences used in the evaluation section.
Filename (.y4m) Frames Resolution Size (bytes) Filename (.y4m) Frames Resolution Size (bytes)

720p50 parkrun ter 504 1280×720 696 732 659 intros 422 ntsc 360 720×486 251 944 605
akiyo cif 300 352×288 45 621 044 mad900 cif 900 352×288 136 863 044
aspen 1080p 570 1920×1080 2 363 907 467 mobile calendar 422 ntsc 360 720×486 251 944 605
blue sky 1080p25 217 1920×1080 674 958 138 mobile cif 300 352×288 45 621 054
bowing cif 300 352×288 45 621 044 mother daughter cif 300 352×288 45 621 044
carphone qcif 382 176×144 14 524 448 mthr dotr qcif 961 176×144 36 539 186
claire qcif 494 176×144 18 782 912 news cif 300 352×288 45 621 044
coastguard cif 300 352×288 45 621 044 pamphlet cif 300 352×288 45 621 044
crowd run 1080p50 500 1920×1080 1 555 203 036 paris cif 1065 352×288 161 954 594
deadline cif 1374 352×288 208 944 224 park joy 1080p50 500 1920×1080 1 555 203 036
elephants dream 720p24 15691 1280×720 21 691 332 590 salesman qcif 449 176×144 17 071 922
flower garden 422 ntsc 360 720×486 251 944 605 soccer 4cif 600 704×576 364 957 238
football 422 ntsc 360 720×486 251 944 605 stefan sif 300 352×240 38 017 846
foreman cif 300 352×288 45 621 044 students cif 1007 352×288 153 134 534
galleon 422 ntsc 360 720×486 251 944 605 suzie qcif 150 176×144 5 703 344
garden sif 115 352×240 14 573 536 tempete cif 260 352×288 39 538 244
grandma qcif 870 176×144 33 079 184 tennis sif 150 352×240 19 008 946
hall monitor cif 300 352×288 45 621 044 trevor qcif 150 176×144 5 703 344
harbour 4cif 600 704×576 364 957 238 tt sif 112 352×240 14 193 358
highway cif 2000 352×288 304 140 044 vtc1nw 422 ntsc 360 720×486 251 944 605
husky cif 250 352×288 38 017 544 washdc 422 ntsc 360 720×486 251 944 605
ice 4cif 480 704×576 291 965 798 waterfall cif 260 352×288 39 538 244

Total 36131 - 33 032 747 339

1http://media.xiph.org/video/derf/

97

http://media.xiph.org/video/derf/

	Cover page
	Contents
	1 Introduction
	1.1 The structure of this thesis
	1.2 A word about images

	2 Video communication systems
	2.1 Services
	2.1.1 Functional verification environment

	2.2 Video transmission
	2.2.1 Transmission issues

	2.3 User interface
	2.3.1 Scaling
	2.3.2 Frame rate changes

	2.4 Encoding
	2.4.1 Color space conversion
	2.4.2 Chroma subsampling
	2.4.3 Transform coding and quantization
	2.4.4 Transcoding
	2.4.5 Other distortions

	3 Encoding data into images
	3.1 Requirements
	3.2 Information encoding
	3.2.1 Glyphs
	3.2.2 Text
	3.2.3 Digital watermarks
	3.2.4 Barcodes

	3.3 Method of choice

	4 Implementation
	4.1 Barcode design
	4.1.1 Modules
	4.1.2 Finder pattern
	4.1.3 Barcode area and codeword placement

	4.2 Existing detectors
	4.3 Detector design
	4.3.1 Distortion model
	4.3.2 Edge detection
	4.3.3 Finder pattern detection
	4.3.4 Match merging
	4.3.5 Merged segment intersection
	4.3.6 Barcode area candidates
	4.3.7 Candidate area elimination
	4.3.8 Value reading

	5 Evaluation
	5.1 Evaluation setup
	5.2 Detection limits
	5.2.1 The minimal module size
	5.2.2 Image compression
	5.2.3 Heavily upscaled images

	5.3 Testing for false positives
	5.3.1 Natural video sequences
	5.3.2 Data sharing

	6 Discussion
	7 Conclusions
	Bibliography
	A Discrete cosine transform
	A.1 Block based discrete cosine transform
	A.2 Discrete cosine transform in JPEG

	B Video test sequences

